This article was downloaded by:
On: 23 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Carbohydrate Chemistry

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713617200

Regioselective Glycodesilylation of Silylated Glycosides as a Useful Tool for the Preparation of Oligosaccharides

Thomas Zieglerea ${ }^{\text {a }}$ E. Eckhardta; G. Pantkowski ${ }^{\text {a }}$
${ }^{a}$ Institute of Organic Chemistry, University of Stuttgart Pfaffenwaldring 55, Stuttgart, Germany

To cite this Article Ziegler, Thomas , Eckhardt, E. and Pantkowski, G.(1994) 'Regioselective Glycodesilylation of Silylated Glycosides as a Useful Tool for the Preparation of Oligosaccharides', Journal of Carbohydrate Chemistry, 13: 1, 81-109 To link to this Article: DOI: 10.1080/07328309408009180
URL: http://dx.doi.org/10.1080/07328309408009180

PLEASE SCROLL DOWN FOR ARTICLE

```
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
```


REGIOSELECTIVE GLYCODESILYLATION OF SILYLATED

GLYCOSIDES AS A USEFUL TOOL FOR THE PREPARATION OF OLIGOSACCHARIDES

Thomas Ziegler,* E. Eckhardt and G. Pantkowski
Institute of Organic Chemistry, University of Stuttgart
Pfaffenwaldring 55, 70569 Stuttgart, Germany

Received February 12, 1993 - Final Form August 18, 1993

Abstract

A series of fully or partially protected alkyl and aryl 4,6-O-(1,1,3,3-tetraisopropyl-1,3-disiloxane-1,3-diyl)-D-glycopyranosides and 1 -thio- β-D-glucopyranosides, respectively, were glycosylated by acetylated α-D-glucopyranosyl-, galactopyranosyl- and cellobiosyl fluoride under Lewis acid-catalysis to give the corresponding β-($1 \rightarrow 6$)-linked di- and trisaccharides, respectively, in moderate to high yield. With benzylated glucopyranosyl fluoride, anomeric mixtures of disaccharides were obtained depending on the solvent that was used for the glycosylation step. The initially formed oligosaccharides having a 1-fluoro-1,1,3,3-tetraisopropyl-1,3-disiloxane-3-yl substituent at position 4 were converted by treatment with tetrabutylammonium fluoride into the corresponding $4-\mathrm{OH}$ compounds which are suitable as glycosyl acceptors for further extension of the sugar chain. Selective glycodesilylation of methyl 2-O-benzoyl-6-O-dimethylthexylsilyl-3,4-O-(1,1,3,3-tetraisopropyl-1,3-disiloxane-1,3-diyl)- α-D-glucopyranoside at position 6 without affecting positions 3 and 4 was possible under similar conditions. 4,6-O-(1,1,3,3-tetraisopropyl-1,3-disiloxane-1,3-diyl)-protected D-glycopyranosyl donors (fluoride, chloride, trichloroacetimidate and ethyl 1-thio-glycoside) of glucose and mannose were also prepared and used for the construction of the corresponding silylated disaccharides. Regioselective ring opening of the silylated glycosides by pyridine-polyhydrogen fluoride gave useful glycosyl acceptors that were subsequently coupled with 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl trichloroacetimidate.

INTRODUCTION

The 1,1,3,3-tetraisopropyl-1,3-disiloxanediyl (TIPS) group, introduced by Markiewicz, ${ }^{1,2}$ has found considerable applications as a temporary protective group in synthetic carbohydrate chemistry. The TIPS group can be selectively introduced to the 3,5position of pentofuranose derivatives ${ }^{1,3-5}$ and to the 4,6 -position ${ }^{5-8}$ or twice to the 2,3 - and 4,6 -position ${ }^{9}$ of hexopyranosides leaving other hydroxyls free for further modifications. Under acidic conditions the 4,6 -protected glycosides of glucose and mannose can be rearranged in high yield to the corresponding 3,4-TIPS protected glycosides. ${ }^{5-8}$ Furthermore, the conversion of the TIPS group into other functional groups is also possible. For example, diastereomeric 4,6-O-(1-methoxycarbonyl)ethylidene substituents are easily generated from TIPS protected glycosides. ${ }^{10}$

Recently, we found that TIPS-protected methyl α-D-glucopyranosides were regioselectively glycosylated at one of the two silylated hydroxyls when treated with 2,3,4,6-tetra- O-acetyl- α-D-glucopyranosyl fluoride under Lewis acid-catalysis. Thus, the 4,6-TIPS-protected glucoside afforded exclusively the corresponding gentiobioside via regioselective glycodesilylation at position 6 leaving a 1 -fluoro-1,1,3,3-tetraisopropyl-1,3-disiloxan-3-yl substituent at $O-4$ of the disaccharide. In contrast, the 3,4 and 2,3-TIPSprotected counterparts, respectively gave both laminaribiose derivatives. ${ }^{11}$ The latter regioselective glycosylation procedure was recently adopted for a novel synthetic strategy for the convenient preparation of di- and trisaccharide fragments related to glycolipids of Mycobacterium smegmatis. ${ }^{12}$ Here, we now present further applications of that glycodesilylation protocol in detail. Special attention was paid to the construction of various β-($1 \rightarrow 6$)-linked oligosaccharides, the combination of the TIPS group with other functionalities and the preparation and use of TIPS-protected glycosyl donors.

RESULTS AND DISCUSSION

Previously, we found that $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ was the most effective catalyst for the glycodesilylation of methyl 2,3-di- O-benzoyl-4,6-O-(1,1,3,3-tetraisopropyl-1,3-disiloxane-1,3-diyl)- α-D-glucopyranoside (2) with $2,3,4,6$-tetra- O-acetyl- α-D-glucopyranosyl fluoride (1a), to give the methyl gentiobioside 3 (Table 1). ${ }^{11} \quad \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ has also been used for similar glycosylations of other silyl ethers with peracylated glycosyl fluorides. ${ }^{13-15}$ Titanium tetrafluoride, introduced by Thiem et al. ${ }^{16}$ as an effective and convenient catalyst for glycodesilylation reactions, gave significantly longer reaction times and lower yields of $\mathbf{3}$ in our case, probably due to its low solubility in dichloromethane. With the perbenzylated β-D-glucopyranosyl fluoride 1 b as glucosyl donor anomeric mixtures of ($1 \rightarrow 6$)-linked disaccharides were obtained in general. For the determination of

Table 1. Reaction of D-glucopyranosyl fluorides 1 a and 1 lb (1 equiv.) with methyl 2,3-di-O-benzoyl-4,6-O-(1,1,3,3-tetraisopropyl-1,3-disiloxane-1,3-diyl)- α-D-glucopyranoside ${ }^{11}$ 2 (1 equiv.) under Lewis acid-catalysis in different solvents to give disaccharides 3 and 4.

Donor	Catalyst	Amount	Solvent	Conditions ${ }^{\text {a }}$	Yield	$\alpha: \beta$-Ratio ${ }^{\text {b }}$
1 a	$\mathrm{Et}_{2} \mathrm{OBF} 3$	$10 \mathrm{~mol}-\%$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	24h, rt	71\% ${ }^{\text {c }}$	0:100
$1 \mathrm{a}^{\text {d }}$	TiF_{4}	10 mol \%	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$48 \mathrm{~h}, \mathrm{it}$	45\% 3	0:100
1b	$\mathrm{Et}_{2} \mathrm{OBF}_{3}$	40 mol -\%	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	24h, rt	67\% 4	66:34
1b	$\mathrm{Et}_{2} \mathrm{OBF}_{3}$	40 mol \%	$\mathrm{Et}_{2} \mathrm{O}$	$48 \mathrm{~h}, \mathrm{rt}$	20\% 4	70:30
1b	TMSOTf	$10 \mathrm{~mol}-\%$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	15h, rt	62\% 4	71:29
1b	TMSOTf	10 mol -\%	$\mathrm{Et}_{2} \mathrm{O}$	20h, rt	54\% 4	90:10
1b	TMSOTf	10 mol -\%	$\mathrm{H}_{3} \mathrm{CCN}$	16h, rt	52\% 4	20:80
1b	$\mathrm{Tf}_{2} \mathrm{O}$	10 mol - \%	$\mathrm{Et}_{2} \mathrm{O}$	$10 \mathrm{~h} 0^{\circ} \mathrm{C}$	decomp.	-
1 b	TiF_{4}	10 mol -\%	$\mathrm{Et}_{2} \mathrm{O}$	48h, rt	no reaction	-

a. Reactions were performed until complete consumption (TLC) of $2 ; \mathrm{rt}=$ room temp.
b. Determined by HPLC. c. According to ref. 11. d. 1.1 equiv. of 1 a.
the α / β-ratio of the partially benzylated products we desilylated the initially formed reaction products with $\mathrm{Bu}_{4} \mathrm{NF}$ in THF and measured the anomeric ratio of the thus formed $4-\mathrm{OH}$ intermediates $\mathbf{4}$ by HPLC. As was expected from previous findings, ${ }^{13,16,17}$ the solvent had a strong effect on the stereoselective outcome of the coupling reaction (Table 1). A high α-content of compounds 4 was obtained when the reaction was performed in diethyl ether with trimethylsilyl trifluoromethanesulfonate (TMSOTI) as the catalyst, whereas in acetonitrile the $\beta-(1 \rightarrow 6)$-linked product predominated. Other Lewis acids $\left(\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}\right.$ and TiF_{4}) were less reactive in combination with $\mathbf{1 b}$ or resulted in decomposition of the acceptor 2 , as was observed for triflic anhydride ($\mathrm{Tf}_{2} \mathrm{O}$). The latter was recently found to be a superior catalyst for the α-selective coupling of the fluoride 1 b to an alcohol. ${ }^{18}$

All 4,6-TIPS-protected gluco- and mannopyranosides used here were prepared from the corresponding free glycosides via reaction of the latter with 1,3-dichloro-1,1,3,3-tetraisopropyl-1,3-disiloxane ${ }^{19}$ and imidazole followed by benzoylation of the TIPS protected intermediates as described previously ${ }^{10,11}$ for compounds $2,5,7,14,21$, and
24. Thus, p-methoxyphenyl (9), and methyl 3-O-benzyl- β-D-glucopyranoside (18) afforded the corresponding $4,6-O$-(1,1,3,3-tetraisopropyl-1,3-disiloxane-1,3-diyl)- β-Dglucopyranosides $10(77 \%)$ and $19(74 \%)$, respectively. For the conversion $9 \rightarrow 10$ a small amount of the fully protected glucoside 10^{\prime} (14%) was isolated. Benzoylation of 10 with benzoyl bromide that was necessary ${ }^{11}$ in order to benzoylate the sterically hindered position 3, and of 19 with benzoyl chloride gave then compounds 11 (100%) and 20 (77%). Selective monobenzoylation ${ }^{11}$ at position 2 was performed with benzoyl chloride on 4,6-TIPS protected methyl β-D-glucopyranoside 12 and benzyl α-D-mannopyranoside 22, to give alcohols 13 (83\%) and 23 (93%), respectively. Methyl 3,4-O-(1,1,3,3-tetraisopropyl-1,3-disiloxane-1,3-diyl)- α-D-glucopyranoside ${ }^{11}$ (15) was silylated at position 6 with the chlorodimethylthexylsilane/imidazole-reagent ${ }^{20}$ to give crude 16, the benzoylation of which afforded glucoside 17 in 52% overall yield.

	$\mathrm{R}^{1}{ }_{\text {e }}$	$\mathrm{R}^{1}{ }^{\text {a }}$	R^{2}	R^{3}	R^{4}	R^{6}
1 c	F	H	OAc	Ac	$\mathrm{Ac}_{4} \mathrm{Glc} \mathrm{Ac}$	
5	SPh	H	OBz	Bz	TIPS	
6	SPh	H	OAc	Ac	Ac	Ac
7	SEt	H	OBz	Bz	TIPS	
8	SEt	H	OAc	Ac	Ac	Ac
9	OAn	H	OH	H	H	H
10	OAn	H	OH	H	TIPS	
10^{\prime}	OAn	H	TIPS		TIPS	
11	OAn	H	OBz	Bz	TIPS	
12	OMe	H	OH	H	TIPS	
13	OMe	H	OBz	H	TIPS	
14	OMe	H	OBz	Bz	TIPS	
15	H	OMe	OH	TIPS		H
16	H	OMe	OH			OTDS
17	H	OMe	OBz	TIPS		OTDS
18	OMe	H	OH	Bn		H H
19	OMe	H	OH	Bn	TIPS	
20	OMe	H	OBz	Bn	TIPS	
21	H	OBn	NHAc	Bz	TIPS	

In the D-galacto series, we previously encountered some difficulties with silylations of methyl α-D-galactopyranoside. ${ }^{10}$ The TIPSCl 2 -imidazole-reagent was rather ineffective and harsher conditions (TIPSCl 2 -AgOTf) had to be applied in order to get acceptable yields of the 4,6-TIPS-protected galactoside 25 . Since the hydroxyl at position 3 of galactosides is very reactive (e.g., selective benzylation via stannylene derivatives ${ }^{21}$ and direct benzoylation ${ }^{22}$ of $3-\mathrm{OH}$ in galactosides is described) we concluded that the initial reaction of TIPSCl 2 with $3-\mathrm{OH}$ rather than $6-\mathrm{OH}$ in methyl galactosides might be responsible for the poor yield of the desired $4,6-O$-protected derivative. Therefore, we treated methyl 3-O benzyl- β-D-galactopyranoside ${ }^{21} 26$ with TIPSCl 2 and imidazole in DMF. TLC revealed the formation of two products the faster moving of which was identified as compound 27 isolated in 44% yield. The slower moving product gave NMR data and elemental analyses which were consistent with compound 33 . The structure of $\mathbf{3 3}$ was proven by its subsequent benzoylation to give 34 , the acid-catalyzed desilylation of which afforded the known methyl 2,4-di- O-benzoyl-3- O-benzyl- β-D-galactopyranoside. 23 The formation of 33 could be suppressed by silylation of compound 26 with TIPSCl $_{2}$ in pyridine followed by benzoylation of intermediate 27 to give the desired galactoside 28 in 81% yield. Similarly, benzyl β-D-galactopyranoside was benzoylated at position 3 via the corresponding stannylene derivative ${ }^{24}$ to give $30(57 \%)$. Protection of the latter with TIPSCl_{2} in pyridine gave first crude 31 that afforded compound $\mathbf{3 2}$ upon benzoylation in 94% overall yield.

The thus prepared TIPS-protected glycosides were then reacted with peracetylated glycosyl fluorides $1 \mathbf{a}, \mathbf{c}$ and $\mathbf{1 d}$ under $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$-catalysis and the results are summarized in Table 2. In all cases (entries 1-13) the primary addition products of the glycosyl fluorides to the 6-positions of the acceptors were obtained in moderate to excellent yield. As was expected from the results of Table 1 the formed di- and trisaccharides were all β-($1 \rightarrow 6$)linked. In cases where the yields of the oligosaccharides were less than 70% (entries 1,3-6 and 13) TLC revealed the presence of hydrolysis products due to the cleavage of the initially formed 4- O-(1-fluoro-1,1,3,3-tetraisopropyl-1,3-disiloxane-3-yl) substituent. These di- and trisaccharide alcohols were also conveniently obtained by fluorodesilylation of the isolated primary addition products with $\mathrm{Bu}_{4} \mathrm{NF}$.
Table 2. BF_{3}-Catalyzed glycodesilylation of various TIPS-protected glycosides with glycopyranosyl fluorides 1a, 1c, and $\mathbf{1 d}$ at room temp, and subsequent derivatisation of the formed products.

Entry	Glycosyl Donor	Glycosyl Acceptor	$\begin{array}{\|} \text { Reaction } \\ \mathrm{BF}_{3} \mathrm{OE}_{2} \\ \hline \end{array}$	$\begin{aligned} & \text { ditions } \\ & \text { Time } \\ & \hline \end{aligned}$	Product	Substituents ${ }^{\text {a }}$, Derivatisation ${ }^{\text {b }}$	Yield
1	1a	5	10 mol -\%	20h		$\mathrm{A}\left[\begin{array}{l} 35 \mathrm{R}^{1}=\mathrm{SPh}, \mathrm{R}^{2}=\mathrm{TIPSF} \\ 36 \mathrm{R}^{1}=\mathrm{SPh}, \mathrm{R}^{2}=\mathrm{H} \end{array}\right.$	$\begin{aligned} & 63 \% \\ & 84 \% \end{aligned}$
2	1 a	7	30 mol -\%	62h	$\mathrm{ACO} \underset{\mathrm{BzO}}{\mathrm{R}^{2} \mathrm{O}}$	$37 \mathrm{R}^{1}=\mathrm{SEt}, \mathrm{R}^{2}=\mathrm{TIPSF}$	70\%
3	1a	11	10 mol \%	14h	OBz $+11 \% 6$ (entry 1) $+10 \% 8$ (entry 2)	$A \text { A }\left[\begin{array}{l} 38 R^{1}=\mathrm{OAn}, \mathrm{R}^{2}=\mathrm{TIPSF} \\ 39 \mathrm{R}^{1}=\mathrm{OAn}, \mathrm{R}^{2}=\mathrm{H} \end{array}\right.$	$\begin{aligned} & 68 \% \\ & 77 \% \end{aligned}$
4	1a	13	20 mol -\%	48h		$A\left[\begin{array}{l} 40 \mathrm{R}^{1}=\mathrm{Bn}, \mathrm{R}^{2}=\mathrm{TIPSF} \\ 41 \mathrm{R}^{1}=\mathrm{Bn}, \mathrm{R}^{2}=\mathrm{H} \end{array}\right.$	$\begin{aligned} & 66 \% \\ & 88 \% \end{aligned}$
5	1a	20	10 mol \%	24h		$A\left[\begin{array}{l} 42 R^{1}=H, R^{2}=\mathrm{TIPSF} \\ 43 R^{1}=R^{2}=H \end{array}\right.$	$\begin{aligned} & 59 \% \\ & 99 \% \end{aligned}$
6	1a	21	100 mol -\%	3days		A ${ }_{\text {a }}$ ($44 \mathrm{R}=\mathrm{TIPSF}$	$\begin{aligned} & 60 \% \\ & 96 \% \end{aligned}$
7	1a	23	10 mol -\%	24h		$A\left[\begin{array}{l} 46 R^{1}=\mathrm{Bz}, \mathrm{R}^{2}=\mathrm{TIPSF} \\ 47 \mathrm{R}^{1}=\mathrm{Bz}, \mathrm{R}^{2}=\mathrm{H} \end{array}\right.$	$\begin{aligned} & 93 \% \\ & 76 \% \end{aligned}$
8	1a	24	10 mol -\%	24h		$A \leftrightarrows \begin{aligned} & 48 R^{1}=H, R^{2}=\text { TIPSF } \\ & 49 R^{1}=R^{2}=H \end{aligned}$	$\begin{aligned} & 85 \% \\ & 87 \% \end{aligned}$

9	1a	25	15 mol -\%	6h			$\begin{aligned} & 93 \% \\ & 97 \% \\ & 83 \% \end{aligned}$
10	1 a	28	10 mol -\%	3days		$\begin{aligned} & 53 \mathrm{R}=\text { TIPSF } \\ & 54 \mathrm{R}=\mathrm{H} \end{aligned}$	$\begin{aligned} & 20 \% \\ & 22 \% \end{aligned}$
11	1c	17	14 mol \%	2.5h		$C\left[\begin{array}{l} 55 \mathrm{R}=\mathrm{TIPS} \\ 56 \mathrm{R}=\mathrm{H} \end{array}\right.$	$\begin{aligned} & 61 \% \\ & 98 \% \end{aligned}$
12	1c	2	10 mol -\%	24h		$\mathrm{A}\left[\begin{array}{l} 57 \mathrm{R}=\text { TIPSF } \\ 58 \mathrm{R}=\mathrm{H} \end{array}\right.$	$\begin{aligned} & 74 \% \\ & 95 \% \end{aligned}$
13	1d	32	$200 \mathrm{~mol} \%$	0.5h			$\begin{aligned} & 53 \% \\ & 85 \% \end{aligned}$

For the conversions $\mathbf{5 \rightarrow 3 5}$ and $\mathbf{7 \rightarrow 3 7}$, respectively, the transglycosylation products 6 and 8 were isolated as by-products of the glycodesilylation reaction. The partially benzoylated glycosides 13 and 23 were also smoothly glycodesilylated at positions 6 , without any formation of β-($1 \rightarrow 3$)-linked products, to give gentiobioside 42 (entry 5) and disaccharide 48 (entry 8), respectively. Obviously, the bulky 4,6-TIPS group prevents position 3 from being glycosylated. The difficult accessibility of position 3 in 4,6-TIPS protected glycosides by electrophiles is well known. $5,7,10,11,25,26$ The products 42 and 48 were subsequently converted to the diols 43 (99%) and 49 (87%), respectively, which are useful derivatives for further modifications of positions 3 and 4 . Although the methyl 3-O-benzyl- β-D-glucopyranoside 20 afforded the gentiobioside 40 in moderate yield from fluoride $\mathbf{1 a}$ (entry 4), difficulties were encountered during the corresponding glycosylation of methyl 3 - O-benzyl- β-D-galactopyranoside 28 (entry 10). Only a small amount of the addition product 53 could be isolated since the fluorinated TIPS-residue at the axial position 4 of the galactose unit was too labile under the reaction conditions applied here. Thus, mixtures of compound 53 and of the corresponding desilylated product 54 were obtained that were rather difficult to purify by chromatography. We therefore recommend preparation of compound 53 by a two step procedure (see below) which gave better overall yields. When the disaccharide 50 (entry 9) was desilylated a mixture of the 2,3 and 2,4 di- O benzoyl derivatives 51 were obtained by fluoride-catalyzed benzoyl-migration. Therefore, compounds 51 were benzoylated to give the fully blocked disaccharide 52 . Similarly, the β-($1 \rightarrow 6$)-linked digalactoside 59 (entry 13) was directly converted into compound 60. Selective glycodesilylation of a dimethylthexylsilyl group in the presence of a 3,4-TIPS group is also possible as outlined in entry 11. The trisaccharide 55 thus obtained from cellobiosyl fluoride 1 c and acceptor 17 may serve on its part as a glycosyl acceptor since regioselective glycodesilylation at position 3 of 3,4 -TIPS-protected α-D-glucose derivatives should be possible. ${ }^{11}$ Unfortunately, we have not been able to open the 3 ,4-linked silyl ether ring in compound 55 regioselectively with pyridine-polyhydrogen fluoride as was possible for the corresponding 4,6-TIPS derivatives 24 and 28 (see below). In summary, we think that the regioselective glycodesilylation protocol outined for the examples in Table 2, in combination with the subsequent formation of di- and trisaccharide alcohols as glycosyl acceptors might serve as a useful strategy for the effective construction of higher oligosaccharides.

In order to further demonstrate the flexibility of that approach we also explored the potential of TIPS-protected glycosyl donors. The possibility to glycosylate a TIPSprotected glycosyl acceptor using glucosyl fluoride 1a without affecting the TIPS group (Table 2, entry 11) prompted us to prepare the fluoride 62. It is easily accessible from α -D-glucopyranosyl fluoride via protection with the TIPSCl_{2}-imidazole-reagent affording first
$61(78 \%)$ followed by benzoylation of the latter with benzoyl bromide to give $62(88 \%)$. Under Lewis acid-catalysis, fluoride 62 reacted smoothly with methyl 2,3,4-tri- O-benzoyl-β-D-glucopyranoside to give the TIPS protected methyl β-D-gentiobioside 64 in 84% yield. A molar amount of $\mathrm{Et}_{3} \mathrm{~N}$ was added to the glycosylation mixture in order to neutralize the formed HF, as was previously recommended by Kunz et al. ${ }^{14}$ Similarly, the TIPS protected glucosyl chloride 63, obtained from methyl glucoside 14 and dichloromethyl methyl ether ${ }^{27}$ in 90% yield, as well as the 1 -thioglucoside 7 afforded $\mathbf{6 4}$ from the former glucosyl acceptor under promotion by silver- and methyl trifluoromethanesulfonate, respectively.

Furthermore, TIPS protected glucosyl trichloroacetimidates are also suitable as efficient glycosyl donors. For example, the aglycon of benzyl α-D-mannopyranoside 24 was first hydrogenolized affording 66 (95\%) which was subsequently reacted with trichloroacetonitrile to give crystalline 67 (89%). The latter imidate afforded the disaccharide 68 (83%) upon Lewis acid-catalyzed reaction with methyl 2,3,4-tri- O -benzoyl- β-D-glucopyranoside. No cleavage of the TIPS groups could be detected.

When treated with pyridine-polyhydrogen fluoride in dichloromethane, compound 24 was selectively converted into the glycosyl acceptor 65 (97%). A similar regioselective ring opening of the TIPS group in benzyl 3 - - -acetyl-2- O-allyl-4,6-O-(1,1,3,3-
tetraisopropyl-1,3-disiloxane-1,3-diyl)- β-D-glucopyranoside by acidic hydrolysis with aqueous hydrochloric acid has been previously described. ${ }^{7}$ The use of HF under nonaqueous conditions is however recommended since the reaction proceeded almost instantaneously and a fluorosilane substituent was formed rather than a more reactive silanol residue. The usefulness of acceptor 65 was demonstrated by its glycosylation with 2,3,4,6-tetra- O-acetyl- α-D-glucopyranosyl trichloroacetimidate (69) to give the disaccharide 46 (78%) which was further converted to the alcohol 47 (Table 2, entry 7).

Methyl galactoside 28 that could not be efficiently glycosylated by fluoride 1 a (see Table 2, entry 10) was also transformed in the same way into alcohol 70 (85%). The latter was coupled with 69 to give compound $53(70 \%)$ and then the alcohol 54 (77\%) upon fluoride-catalyzed desilylation. A small amount of the transesterification product 2871 (17%) was formed as a by-product of the conversion $\mathbf{7 0 \rightarrow 5 3}$. Attempts to open the 3,4-O-TIPS ring of the trisaccharide 55 (Table 2, entry 11) by pyridine-polyhydrogen fluoride were, however, unsuccessful. Only complete protodesilylation was observed, affording diol 56 as the sole product.

CONCLUSION

The regioselective glycosylation of 4,6-O-TIPS protected glycopyranosides with glycosyl fluorides (glycodesilylation) can serve as a useful tool for the preparation of highly functionalized β-($1 \rightarrow 6$)-linked oligosaccharides. Furthermore, the possibility to prepare TIPS protected glycosyl donors such as halides, trichloroacetimidates and l-thio-glycosides in high yield and their use in "classical" glycosylation reactions provide further extensions of this method. Also various alcohols are easily available via regioselective opening of the TIPS ring and can be used as glycosyl acceptors. Further extensions of this approach to 3,4 and 2,3-O-TIPS-protected glycosides are now under investigation.

EXPERIMENTAL

General Methods. NMR data (Table 3) were extracted from spectra measured in solutions of CDCl_{3} (with TMS as an internal standard) at $25^{\circ} \mathrm{C}$ with a Bruker AC 250 F spectrometer. Proton-signal assignments were made by first order analysis of the spectra. Of the two magnetically non-equivalent geminal protons at $\mathrm{C}-6$, the one resonating at lower field was designated $6-\mathrm{Ha}$ and the one resonating at higher field was designated $6-\mathrm{Hb}$. Carbon-signal assignments were made by mutual comparison of the spectra and by comparison with spectra of related compounds. Data in the first, second and third row, when present, refer to the first, second and third sugar residue beginning at the residue bearing the aglycon. Optical rotations were measured at $25^{\circ} \mathrm{C}$ with a Perkin-Elmer automatic polarimeter, Model 241. Melting points were measured with a Büchi apparatus, Model SMP-20. Thin-layer chromatographies (TLC) were performed on precoated plastic sheets, Polygram SIL UV $254,40 \times 80 \mathrm{~mm}$ (Macherey-Nagel) using appropriately adjusted mixtures of carbon tetrachloride-acetone for the developing. Detection was effected with UV light, where applicable and by charring with 5% sulfuric acid in ethanol. HPLC analysis of compounds 4 was performed with a LDC/Milwn Roy system by elution of 0.6 mg samples from a Nucleosil $100-5$ column (Macherey-Nagel) using ethyl acetate/n-hexane ($20: 80$) as solvent at a flow rate of $2 \mathrm{~mL} / \mathrm{min}$ and detection of the products at 257 nm . Preparative chromatographies were performed by elution from columns of Silica Gel 60 (Merck) using carbon tetrachloride-acetone mixtures as solvent. Solutions in organic solvents were dried with anhydrous sodium sulfate, and concentrated at $2 \mathrm{kPa}, \leq 40^{\circ} \mathrm{C}$.

Methyl \boldsymbol{O}-($2,3,4,6$-Tetra- O-acetyl- β-D-glucopyranosyl)-($1 \rightarrow 6$)-2,3-di-O-benzoyl-4-O-(1-fluoro-1,1,3,3-tetraisopropyl-1,3-disiloxane-3-yl)- α-Dglucopyranoside (3). A mixture of $1 \mathrm{a}(0.35 \mathrm{~g}, 1.0 \mathrm{mmol}), 2^{11}(0.65 \mathrm{mmol})$ and TiF_{4} ($12.4 \mathrm{mg}, 0.1 \mathrm{mmol}$) in dichloromethane (20 mL) was stirred at room temp. until TLC
Table 3. NMR data in CDCl_{3} : chemical shifts $\delta[\mathrm{ppm}]$; coupling constants $J[\mathrm{~Hz}]$

Comp	$\begin{gathered} \mathrm{H}-1 \\ \left(J_{1,2}\right) \end{gathered}$	$\begin{gathered} \mathrm{H}-2 \\ \left(J_{2,3}\right) \end{gathered}$	$\begin{gathered} \mathrm{H}-3 \\ \left(J_{3,4}\right) \end{gathered}$	$\begin{gathered} \mathrm{H}-4 \\ \left(J_{4,5}\right) \end{gathered}$	$\begin{gathered} \mathrm{H}-5 \\ \left(J_{5,6 \mathrm{a}}\right) \end{gathered}$	$\begin{gathered} \mathrm{H}-6 \mathrm{a} \\ \left(J_{5,6 \mathrm{~b}}\right) \end{gathered}$	$\begin{gathered} \mathrm{H}-6 \mathrm{~b} \\ \left(J_{6 \mathrm{a}, 6 \mathrm{~b}}\right) \end{gathered}$	Subst. ${ }^{\text {a }}$	C-1	C-2	C-3	C-4	C-5	C-6	Subst. ${ }^{\text {a }}$
10	4.75 d	3.71-3.58m	3.71-3.58m	3.90 t	3.27 bd	4.11 dd	3.96dd	3.76s, Me	102.2	69.0	76.1	76.7	73.7	60.9	55.6, Me
	(7.4)	(-)	(9.0)	(9.0)	(2.0)	(1.4)	(-12.5)								
10^{\prime}	4.74 d	3.75 bt	3.80 t	3.96 t	3.24 bd	4.14 dd	4.02 dd	3.75 s , Me							
	(7.3)	(8.2)	(9.0)	(9.0)	(2.0)	(1.2)	(-12.5)		101.1	72.3	75.3	77.5	67.8	60.9	55.6, Me
11	5.13 d	5.56 dd	5.73 t	4.35 t	3.55 bd	4.21 dd	4.12 dd	3.73s, Me							
	(7.9)	(9.7)	(9.6)	(9.3)	(2.0)	(<1.0)	(-12.6)								
13	$\begin{aligned} & 4.50 \mathrm{~d} \\ & (7.8) \end{aligned}$	$\begin{gathered} 5.05 \mathrm{dd} \\ (9.1) \end{gathered}$	$\begin{aligned} & \mathbf{3 . 8 4 t} \\ & (9.1) \end{aligned}$	$\begin{aligned} & 3.95 \mathrm{t} \\ & (9.0) \end{aligned}$	$\begin{gathered} 3.27 \mathrm{bd} \\ (2.0) \end{gathered}$	$4.13 \mathrm{dd}$	$\begin{aligned} & 4.02 \mathrm{dd} \\ & (-12.5) \end{aligned}$	3.50 s , Me	102.2	74.6	$76.5{ }^{\text {b }}$	$75.7{ }^{\text {b }}$	69.4	60.7	57.0, Me
17	4.93 d	5.03dd	4.21 dd	3.69-3.61m	$3.69-3.61 \mathrm{~m}$	3.95 dd	$3.69-3.61 \mathrm{~m}$	$3.38 \mathrm{~s}, \mathrm{Me}$	97.1	72.6	$73.7^{\text {b }}$	74.3	$73.5{ }^{\text {b }}$	62.6	55.6, Me
	(3.8)	(9.6)	(7.7)	(-)	(1.4)	(-)	(-11.2)								
23	5.08 d	5.49 dd	3.63 brd	4.31 t	4.24 bd	4.17 dd	3.91 dd	$4.71 \mathrm{~d}, 4.54 \mathrm{~d}$	97.8	70.7	$72.9{ }^{\text {b }}$	67.6	$73.1{ }^{\text {b }}$	60.8	69.5, Bn
	(1.3)	(3.2)	(9.3)	(9.3)	(1.8)	(1.2)	(-12.6)	(-11.9), Bn							
27	4.13d	3.888d	3.33 dd	4.25 bd	3.48 -3.44m	3.84-3.80m	$3.84-3.80 \mathrm{~m}$	$4.77 \mathrm{~d}, 4.63 \mathrm{~d}^{\text {c }}$	104.3	70.4	80.5	74.1	65.5	59.4	72.5, Bn
	(7.7)	(9.8)	(3.8)	(<1.0)	(-)	$(-)$	$(-)$	3.51 s , Me	102.1						56.9, Me
28	4.43 d	5.57 dd	3.60-3.51m	4.35 bd	$3.60-3.51 \mathrm{~m}$	3.90 dd	3.83dd	$4.63 \mathrm{~d}, 4.55 \mathrm{~d}^{\text {d }}$		71.0	78.6	74.1	65.5	59.4	72.0, Bn
	(8.0)	(10.1)	$(-)$	(<1.0)	(3.0)	(4.4)	(-10.3)	3.42 s , Me	105.4						55.8, Me
$30^{\text {e }}$	4.50 d	3.98dd	4.96 dd	4.17 bd	3.65 bt	3.82dd	3.75dd	$4.97 \mathrm{~d}, 4.70 \mathrm{~d}$		71.5	79.4	69.3	77.9	63.6	53.8, Ma
	(7.8)	(10.2)	(3.2)	(<1.0)	(6.9)	(5.3)	(-11.2)	(-11.8), Bn							
32	4.69d	5.85 dd	5.22 dd	4.59 bd	3.77 bdd	3.94 bd	3.94 bd	4.90d, 4.66d	99.6	69.5	$74.0{ }^{\text {b }}$	74.6	$66.6^{\text {b }}$	59.2	70.0, Bn
	(7.9)	(10.6)	(3.2)	(<1.0)	${ }^{(-)}$	$(-)$	$\stackrel{(-)}{ }$	(-12.6), Bn							
33	4.16 d	3.79dd	3.41 dd	4.12 bs	$3.46-3.43 \mathrm{~m}$	4.04 dd	3.92dd	$4.75 \mathrm{~d}, 4.72 \mathrm{~d}^{\mathrm{f}}$	104.0	71.1	80.6	74.8	65.7	61.3	71.9. Bn 56.9, Me 70.7, Bn $56.9, \mathrm{Me}$
	(7.7)	(9.4)	(3.3)	(<1.0)	(7.0)	(5.4)	(-10.0)	3.54 s , Me							
34	4.50 d	5.49 dd	3.77 dd	5.91 bd	$3.83-3.73 \mathrm{~m}$	3.96 dd	3.86 dd	$4.73 \mathrm{~d}, 4.55 \mathrm{~d} \mathrm{~g}$	102.4	71.4	76.3	74.3	66.2	60.9	
	(8.0)	(10.0)	(3.3)	(<1.0)	(6.3)	(6.9)	(-10.0)	3.51 s , Me							
35	5.00 d	5.13 t	5.33 t	4.02 bt	4.29-4.22m	4.27 dd	4.13 dd		86.4	71.0	76.7	70.0	80.6	68.2	
	(10.0)	(9.9)	(9.9)	(9.0)	(6.3)	(2.3)	(-12.4)								
	4.65d	5.05 dd	5.64 t	5.19 t	3.63 ddd	$3.89-3.73 \mathrm{~m}$	$3.89-3.73 \mathrm{~m}$		101.0	71.3	73.1	69.8	71.8	61.7	
	(7.9)	(9.4)	(9.2)	(9.2)	(2.2)	(5.9)	$\stackrel{(-)}{ }$		86.3	70.0	78.1	68.9	79.5		
36	4.93 d	5.18 t	5.42 t	3.85-3.75m	$4.67-4.20 \mathrm{~m}$	4.25 dd	4.18 dd							68.3	$56.9, \mathrm{Me}$
	(9.8)	(9.8)	(9.9)	$(-)$	(4.5)	(2.6)	(-12.5)								
	4.67 d	5.05 dd	5.38 t	5.21 t	3.70 ddd	3.91 dd	$3.85-3.75 \mathrm{~m}$		101.0	71.2	72.8	70.0	72.0	61.8	
	(7.9)	(9.4)	(9.2)	(9.4)	(5.5)	(2.6)	(-11.3)								
37	$\begin{gathered} 4.74 \mathrm{~d} \\ (10.0) \end{gathered}$	$\begin{gathered} \text { 5.03dd } \\ (9.8) \end{gathered}$	$\begin{aligned} & 5.29 \mathrm{t} \\ & (9.8) \end{aligned}$	$\begin{aligned} & 4.00 \mathrm{t} \\ & (9.8) \end{aligned}$	$\underset{(-)}{4.34-4.22 \mathrm{~m}}$	$\begin{gathered} 4.34-4.22 \mathrm{~m} \\ (2.2) \end{gathered}$	$\begin{aligned} & \text { 4.13dd } \\ & (-12.1) \end{aligned}$	$\begin{aligned} & 2.77-2.69 \mathrm{~m} \\ & 1.27 \mathrm{t}, \mathrm{EtS} \end{aligned}$	83.5	71.3	76.8	70.2	80.6	68.3	
	4.66 d	5.06 dd	5.63 t	5.17 t	3.78-3.68m	3.78-3.68m	$3.78-3.68 \mathrm{~m}$		101.0	71.3	73.0	69.8	71.9	61.8	55.6, Me
	(7.9)	(9.3)	(9.2)	(9.3)	${ }^{(-)}$	${ }^{(-)}$	${ }^{(-)}$								
38	5.17 d	5.53 dd	5.67 dd	4.08bt	4.35-4.24m	4.35-4.24m	$3.94-3.79 \mathrm{~m}$	3.77 s , Me	$\begin{aligned} & 100.1 \\ & 100.7 \end{aligned}$	72.171.3	74.5	75.4	73.0	68.2	
	(8.0)	(9.8)	(9.0)	(9.0)	$(-)$	$(-)$	(-)								
	4.69d	5.06dd	5.14 t	5.07 t	4.88 bt	4.13-4.08m	3.94-3.79				73.0	69.9	71.8	61.6	
	(7.8)	(9.5)	(9.8)	(9.9)	$(-)$	$(-)$	(-)								

Table 3. Continued

49	$\begin{aligned} & 5.00 \mathrm{~d} \\ & (1.6) \end{aligned}$	$\begin{gathered} 5.38 \mathrm{dd} \\ (3.4) \end{gathered}$	$3.90-3.79 \mathrm{~m}$	$\begin{aligned} & 4.16 \mathrm{bt} \\ & (9.9) \end{aligned}$	3.73ddd (4.5)	$\begin{gathered} \text { 4.26xdd } \\ (2.3) \end{gathered}$	$\begin{aligned} & \text { 4.15dd } \\ & (-12.4) \end{aligned}$	$4.72 \mathrm{~d}, 4.52 \mathrm{~d}$ $(-11.8), \mathrm{Bn}$	97.0	69.3	$72.4{ }^{\text {b }}$	69.1	70.5	68.7	69.6. Bn
	4.64 d	5.09 dd	5.24 t	5.10 t	3.90-3.79m	$4.19-4.11 \mathrm{~m}$	$3.90-3.79 \mathrm{~m}$		101.0	71.1	$72.7{ }^{\text {b }}$	68.4	71.9	61.8	
	(7.7)	(9.7)	(9.4)	(9.7)	(-)	$(-)$	$(-)$								
50	5.11 d	5.72 dd	5.64 dd	4.55 bd	4.17 bdd	4.02 dd	3.85 dd	3.41 s , Me	97.4	68.7	70.5	70.5	71.8	70.3	55.2. Me
	(3.3)	(10.8)	(2.5)	(<1.0)	(2.8)	(8.5)	(-10.8)								
	4.62 d	5.04 dd	5.24 t	5.13 t	3.72ddd	4.31 dd	4.12 dd		101.4	$71.3^{\text {b }}$	72.8	68.3	$71.2^{\text {b }}$	61.8	
	(8.0)	(9.4)	(9.3)	(9.3)	(4.3)	(2.1)	(-12.4)								
52	5.27 d	5.64dd	5.93 dd	5.89 bd	4.46 bdd	3.98dd	3.77 dd	3.46s, Me	97.4	$68.2{ }^{\text {b }}$	$68.4{ }^{\text {b }}$	69.4	69.7	68.9	55.5, Me
	(3.6)	(10.3)	(3.4)	(<1.0)	(3.7)	(8.0)	(-10.8)								
	4.58 d	5.01dd	5.06 t	5.20 t	3.69 ddd	4.21 dd	4.05 dd		101.0	71.8	72.7	$68.3{ }^{\text {b }}$	71.2	61.8	
	(7.8)	(9.6)	(9.5)	(9.4)	(4.8)	(2.3)	(-12.3)								
53	4.29 d	5.45 dd	3.44 dd	4.18 bd	3.52 bdd	3.93 dd	3.80 dd	4.42d, 4.41d	101.4	73.0	79.0	75.4	68.5	70.4	72.9, Bn
	(7.7)	(9.7)	(2.7)	(<1.0)	(3.0)	(7.9)	(-11.0)	(-11.8), Bn							
	4.44 d	4.91 dd	5.10 t	5.00 t	3.60 ddd	4.19 dd	4.01 dd	3.35 s , Me	102.1	$72.0{ }^{\text {b }}$	$71.5{ }^{\text {b }}$	49.2	$71.3{ }^{\text {b }}$	62.0	56.2, Me
	(8.0)	(9.3)	(9.3)	(9.6)	(4.4)	(2.1)	(-12.3)								
54	4.37 d	5.43 dd	3.67 dd	4.04 bd	$3.67-3.60 \mathrm{~m}$	4.10 dd	3.96 dd	4.67d, 4.52 d	101.1	71.9	78.0	73.9	66.2	69.1	72.8, Bn
	(8.0)	(9.6)	(3.3)	(<1.0)	(4.2)	(7.4)	(-11.1)	(-12.2), Bn							
	4.67 d	5.02 dd	5.21 t	5.09 t	3.73 ddd	4.27 dd	4.16 dd	3.46s, Me	101.9	71.0	$71.4{ }^{\text {b }}$	68.3	$71.3{ }^{\text {b }}$	61.9	56.6. Me
	(8.0)	(9.4)	(9.4)	(9.6)	(4.7)	(3.3)	(-12.4)								
55	4.90 d	5.03 dd	3.67 bt	3.46 bt	$3.90-3.82 \mathrm{~m}$	4.19 dd	3.57 dd	3.36s, Me	97.1	72.7	74.2	74.0	72.0	68.9	55.1, Me
	(3.9)	(9.8)	(9.8)	(9.5)	(8.2)	(8.2)	(-10.0)								
	4.52d	4.93 dd	5.18 t	3.81 bt	$4.15-4.08 \mathrm{~m}$	4.50 dd	4.15-4.08m		$100.9{ }^{\text {b }}$	71.7	73.2	76.7	71.7	62.2	
	(7.8)	(9.1)	(9.1)	(9.1)	(4.0)	$(-)$	(-10.2)								
	4.66 d	4.95 dd	$5.16 t$	5.06 t	$3.70-3.63 \mathrm{~m}$	4.37 dd	4.04 dd		$100.7{ }^{\text {b }}$	71.2	73.0	67.9	71.7	61.6	
	(7.7)	(9.3)	(9.3)	(9.8)	(4.4)	(2.1)	(-12.5)								
56	4.98 d	4.98-4.89m	3.79 bt	3.79 bt	$3.86-3.79 \mathrm{~m}$	4.14-4.02m	$3.69-3.60 \mathrm{~m}$	3.36s, Me	97.2	72.4	73.7	71.8	71.3	68.8	55.3, Me
	(3.5)	(9.1)	(9.1)	(9.1)	$(-)$	(-)	$(-)$								
	4.53 d	4.98-4.89m	5.20 t	4.14-4.02m	4.14-4.02m	4.60 dd	3.55 dd		100.8	72.0	72.9	76.3	71.6	61.6	
	(7.9)	(9.3)	(9.3)	(-)	(-)	(3.8)	(-10.0)								
	4.63 d	4.98-4.89m	5.16 t	5.07 t	$3.69-3.60 \mathrm{~m}$	4.38 dd	4.14-4.02m		100.8	70.0	72.9	67.8	71.4	61.6	
	(7.8)	(9.2) 499 dd	(9.2)	(9.4)	$\stackrel{(4.3)}{4.07 .37 m}$	$4{ }^{(-)}$	(-12.6)								
57	5.11 d	4.99 dd	5.88 t	3.82 t	$4.07-3.97 \mathrm{~m}$	4.11 dd	3.72 dd	3.39s, Me	96.5	$72.5{ }^{\text {b }}$	$72.6{ }^{\text {b }}$	72.0	73.0	70.0	55.2, Me
	(3.8)	(9.1)	(9.1)	(9.4)	(4.8)	(3.4)	(-12.0)								
	4.52 d	4.96 dd	4.78 t	3.98 t	4.21 bd	4.38 dd	$4.07-3.97 \mathrm{~m}$		100.9	71.6	71.6	77.2	$72.7{ }^{\text {b }}$	$62.0{ }^{\text {h }}$	
	(7.9)	(9.3)	(9.2)	(9.4)	(4.4)	(-)	(-12.5)								
	4.62 d	4.94 dd	5.19 t	4.97 t	3.69-3.48m	4.49bd	$4.07-3.97 \mathrm{~m}$		101.3	70.3	73.0	67.8	71.6	$61.6^{\text {h }}$	
	(7.8)	(9.0)	(9.1)	(9.3)	$(-)$	$(-)$	$(-)$								

58	5.17 d	5.20 dd	5.72 dd	3.80 bt	3.96-3.76m	4.38 dd	3.96-3.76m	3.41 s , Me	96.9	71.8	$72.3^{\text {b }}$	71.3	73.9	68.4	55.3, Me
	(3.6)	(10.1)	(9.1)	(9.6)	(4.1)	(-)	(-12.0)								
	4.53d	4.98 dd	5.07 t	4.12 t	$4.37-4.31 \mathrm{~m}$	4.56 dd	$3.96-3.76 \mathrm{~m}$		$100.7{ }^{\text {h }}$	71.3	72.8	76.3	$72.7{ }^{\text {b }}$	$61.6{ }^{1}$	
	(8.0)	(9.0)	(9.0)	(9.3)	(1.7)	$\stackrel{(-)}{ }$	(-12.3)								
	$\begin{aligned} & 4.65 \mathrm{~d} \\ & (7.9) \end{aligned}$	$\begin{gathered} 5.21 \mathrm{dd} \\ (9.4) \end{gathered}$	$\begin{aligned} & 5.12 \mathrm{t} \\ & (9.4) \end{aligned}$	$\begin{aligned} & 4.93 \mathrm{t} \\ & (9.0) \end{aligned}$	$3.71-3.62 \mathrm{~m}$ (4.1)	$\begin{gathered} 4.38 \mathrm{dd} \\ (1.9) \end{gathered}$	$\begin{aligned} & \text { 4.04dd } \\ & (-12.2) \end{aligned}$		$100.8^{\text {h }}$	70.7	69.7	67.7	71.5	$61.5{ }^{1}$	
59	$4.59 \mathrm{~d}$	5.26 dd	5.03dd	$4.48 \mathrm{bd}$	$4.23-3.84 \mathrm{~m}$	$4.23-3.84 \mathrm{~m}$	$4.23-3.84 \mathrm{~m}$	$4.92 \mathrm{~d}, 4.74 \mathrm{~d}$	99.5	69.4	$74.6{ }^{\text {b }}$	69.0	$74.9{ }^{\text {b }}$	69.8	69.8, Bn
	4.69 d	5.85 dd	5.20 dd	5.40 bd	$4.23-3.84 \mathrm{~m}$	$4.23-3.84 \mathrm{~m}$	$4.23-3.84 \mathrm{~m}$		101.6	69.4	70.9	67.0	70.7	61.1	
	(7.8)	(10.4)	(2.3)	(<1.0)	${ }^{(-)}$	(-)	(-)								
60	4.57 d	5.26 dd	5.02 dd	4.09 bd	4.11-4.03m	4.11-4.03m	3.90 bt	$4.98 \mathrm{~d}, 4.77 \mathrm{~d}$	99.5	69.7	73.1	68.7	71.1	68.0	70.4, Bn
	(7.9)	(10.4)	(3.4)	(<1.0)	$(-)$	$(-)$	(-)	$(-12.5), \mathrm{Bn}$							
	4.79 d	5.85 dd	5.49 dd	5.39 bd	4.11-4.03m	$4.11-4.03 \mathrm{~m}$	3.86 dd		101.0	68.0	70.9 ${ }^{\text {b }}$	67.0	$70.8{ }^{\text {b }}$	61.2	
	(7.9) $5.66 d d$	${ }^{(10.4)}$	(3.4) 3.72 bt	(<1.0) 3.80 t	${ }_{3.86-3.81 \mathrm{~m}}$	(7.6) 4.09 dd	(-10.6) 3.92 dd		107.31				74.71		
61	$\begin{aligned} & 5.6 \mathrm{dd} \\ & (2.9) \end{aligned}$	$\begin{aligned} & 3.57 \mathrm{ddd}^{\mathrm{K}} \\ & (9.4) \end{aligned}$	$\begin{aligned} & 3.72 \mathrm{bt} \\ & (9.3) \end{aligned}$	$\begin{aligned} & 3.80 t \\ & (9.0) \end{aligned}$	3.86-3.81m (1.9)	$\begin{aligned} & \text { 4.09dd } \\ & \text { (1.2 } \end{aligned}$	$\begin{aligned} & 3.92 \mathrm{dd} \\ & (-12.9) \end{aligned}$		107.3	2.3k		68.6	74.7	60.3	
62	$5.88 \mathrm{dd}^{\mathrm{m}}$	$5.12 d^{\text {d }}{ }^{\text {n }}$	5.91 t	4.23 t	3.94 bt	4.13 dd	3.94bt		$104.4{ }^{\text {m }}$	$73.5{ }^{\text {n }}$	71.9	67.0	72.0°	60.3	
	(2.8)	(10.1)	(9.8)	(9.5)	(2.1)	(9.5)	(-13.0)								
6	6.51 d	5.25 dd	6.05 t	4.32 t	4.13 bt	4.22 dd	4.01 bd		91.4	$72.3{ }^{\text {b }}$	$72.0{ }^{\text {b }}$	75.5	66.9	60.3	
	(4.0)	(10.0)	(9.7)	(9.5)	(2.0)	(9.6)	(-12.3)								
64	4.83 d	5.32 dd	5.79 t	5.27 t	4.02 bd	4.14 dd	3.78dd	3.10s, Me	$101.8{ }^{\text {b }}$	69.9	72.9	74.0	71.8	68.8	56.7, Me
	(7.9)	(9.7)	(9.6)	(9.6)	(1.9)	(8.6)	(-11.8)								
	4.46 d	5.34 dd	5.67 t	4.24t	3.44 bd	4.08 dd	3.93 dd		$101.6{ }^{\text {b }}$	67.8	75.2	76.9	72.5	60.7	
	(7.9)	(9.7)	(9.5)	(9.3)	(1.5)	(1.3)	(-10.6)								
65	5.05 d	$5.69-5.62 \mathrm{~m}$	5.69-5.62m	4.61 t	$3.95-3.85 \mathrm{~m}$	3.95-3.85m	$3.95-3.85 \mathrm{~m}$	4.82d, 4.64d	96.8	70.5	$73.5{ }^{\text {b }}$	66.3	$73.1{ }^{\text {b }}$	61.7	69.6, Bn
	(1.0)	(3.3)	(9.0)	(9.0)	(-)	$(-)$	$(-)$	(-12.1), Bn							
6	5.45 d	5.64 dd	5.79 dd	4.63 t	4.08 bd	4.25 dd	3.96 bd	$3.53 \mathrm{bd}, \mathrm{OH}$	92.9	71.4	73.2	64.9	72.0	61.0	
67	(1.5)	(3.3)	59.8)	(9.5)	(1.8)	(<1.0)	(-12.5)	(3.8)							
6	6.48 d	5.82 dd	5.79dd	4.721	4.00 bd	4.23 dd	4.04 bd		95.7	69.1	76.1	64.3	71.5	60.6	
	(1.0) 4.78 d	(3.4)	(9.4)	(9.5) 5.471	(2.1) 4.19 .389 m	$\stackrel{(<1.0)}{4.19 .389}$	$\stackrel{(-12.8)}{4.89}$								
68	$\begin{aligned} & 4.78 \mathrm{~d} \\ & (7.9) \end{aligned}$	$\begin{gathered} \text { 5.52dd } \\ (9.8) \end{gathered}$	$\begin{aligned} & 5.92 \mathrm{t} \\ & (9.6) \end{aligned}$	$\begin{aligned} & 5.471 \\ & (9.7) \end{aligned}$	$\begin{gathered} 4.19-3.89 \mathrm{~m} \\ (-) \end{gathered}$	$4.19-3.89 \mathrm{~m}$ (-)	$\begin{gathered} 4.19-3.89 \mathrm{~m} \\ (-) . \end{gathered}$	3.61 s, Me	102.0	70.7	$73.0^{\text {b }}$	$73.1{ }^{\text {b }}$	71.9	66.3	57.4, Me
	5.01 d	5.58 dd	5.71 dd	4.611	$4.19-3.89 \mathrm{~m}$	4.19-3.89m	3.67 bd		97.7	69.9	$73.1{ }^{\text {b }}$	64.8	72.2	60.8	
	(1.1)	(3.5)	(9.8)	(9.6)	$(-)$	(-)	$(\stackrel{-}{\text { (}}$								
70	4.47 d	5.61 dd	3.58 dd	4.38 bd	3.49-3.60m	3.95 bdd	3.85-3.72m	4.46d, $4.52 \mathrm{~d}^{p}$	102.1	71.1	79.2	76.0	68.2	62.2	72.6, Bn
70	(7.9)	(9.8)	(2.6)	(<1.0)	(7.6)	$(-)$	(-11.1)	3.47s, Me							$55.9, \mathrm{Me}$
71	4.45 d	5.59 dd	3.59 dd	4.40 bd	3.70 bt	4.38 bd	4.32dd	4.65d, $4.55 \mathrm{~d}^{9}$	101.8	70.9	78.9	73.4	68.5	63.9	72.7, Bn
	(7.5)	(9.5)	(2.7)	(<1.0)	(<1.0)	(5.1)	(-11.5)	3.46s, Me							55.8, Me

[^0]revealed complete consumption of 2 (48 h). The mixture was washed with aqueous NaHCO_{3} solution and concentrated. Chromatography of the residue gave $3(0.45 \mathrm{~g}, 45 \%)$ as a colorless foam: $[\alpha]_{\mathrm{D}}+70.0^{\circ}$ (c 0.3 , chloroform), ref. $11:[\alpha]_{\mathrm{D}}+70.4^{\circ}$ (c 0.3 , chloroform).

Methyl O-($2,3,4,6$-Tetra-O-benzyl-D-glucopyranosyl)-($1 \rightarrow 6$)-2,3-di-O-benzoyl- $\boldsymbol{\alpha}$-D-glucopyranoside (4). a) A mixture of $\mathbf{1 b}{ }^{29}$ ($0.77 \mathrm{~g}, 1.2 \mathrm{mmol}$), 2 ($0.71 \mathrm{~g}, 1.3 \mathrm{mmol}$) and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(60 \mu \mathrm{~L}, 0.5 \mathrm{mmol})$ in dichloromethane (10 mL) was stirred at room temp. until TLC revealed complete consumption of $2(24 \mathrm{~h})$. The mixture was washed with aqueous NaHCO_{3} solution and concentrated. $\mathrm{Bu}_{4} \mathrm{NF} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.35 \mathrm{~g}, 1.0$ mmol) was added to a solution of the residue in THF (20 mL), the mixture was stirred at room temp. for 0.5 h and concentrated. Chromatography of the residue gave 4 (0.74 g , 67%) as a colorless foam: $\alpha: \beta=66: 34$ (HPLC); ${ }^{1} \mathrm{H}$ NMR δ (significant peaks) $\mathbf{4 \beta}$: 5.11 (bd, $1 \mathrm{H}, J_{1,2}=3.6 \mathrm{~Hz}, \mathrm{H}-1$), 4.57 (d, $1 \mathrm{H}, J_{1,2}=7.9 \mathrm{~Hz}, \mathrm{H}-1^{\prime}$); $4 \alpha: 5.11$ (bd, $2 \mathrm{H}, J_{1,2}$ $\left.=3.6 \mathrm{~Hz}, \mathrm{H}-1,1^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR δ (significant peaks) $4 \beta: 103.7$ (C-1'), 97.8 (C-1), 84.7 (C3^{\prime}), 55.4 (OMe); 4 α : 96.8, 96.9 (C-1,1'), 82.0 (C-3'), 55.3 (OMe).

Anal. Caled for $\mathrm{C}_{55} \mathrm{H}_{56} \mathrm{O}_{13}: \mathrm{C}, 71.41 ; \mathrm{H}, 6.10$. Found: $\mathrm{C}, 71.12 ; \mathrm{H}, 6.09$.
b) General Procedure: A solution of $\mathbf{1 b}(271.3 \mathrm{mg}, 0.5 \mathrm{mmol}), 2(322.5 \mathrm{mg}, 0.5$ mmol) and catalyst ($10-40 \mathrm{~mol}-\%$) in the appropriate solvent (10 mL) was treated as described above to give compounds 4 the anomeric ratio of which was determined by HPLC (see Table 1).
p-Methoxyphenyl 4,6-O-(1,1,3,3-Tetraisopropyl-1,3-disiloxane-1,3-diyl)- β-D-glucopyranoside (10) and p-Methoxyphenyl 2,3:4,6-Bis-O-(1,1,3,3-tetraisopropyl-1,3-disiloxane-1,3-diyl)- $\boldsymbol{\beta}$-D-glucopyranoside ($\mathbf{1 0}^{\prime}$). 1,3-Dichloro-1,1,3,3-tetraisopropyl-1,3-disiloxane ${ }^{19}$ ($1.74 \mathrm{~g}, 5.5 \mathrm{mmol}$) was added dropwise at room temp. to a solution of p-methoxyphenyl β-D-glucopyranoside ${ }^{30} 9$ ($1.43 \mathrm{~g}, 5.0 \mathrm{mmol}$) and imidazole ($1.50 \mathrm{~g}, 22.0 \mathrm{mmol}$) in DMF (10 mL). The mixture was stirred for 1 h , diluted with water (200 mL) and extracted with dichloromethane. The organic layers were washed with aqueous NaHCO_{3}-solution and concentrated. Chromatography of the residue gave first $10^{\prime}(0.56 \mathrm{~g}, 14 \%)$ as colorless crystals: mp 103$105^{\circ} \mathrm{C}$ with softening at $95^{\circ} \mathrm{C}$ (from methanol); $[\alpha]_{\mathrm{D}}-41.9^{\circ}$ (c 0.7, chloroform).

Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{70} \mathrm{O}_{9} \mathrm{Si}_{2}$: C, 57.62; $\mathrm{H}, 9.15$. Found: C, $57.87 ; \mathrm{H}, 9.15$.
Eluted next was 10 ($2.04 \mathrm{~g}, 77 \%$) as colorless crystals: $\mathrm{mp} 104-108^{\circ} \mathrm{C}$ (from acetone $/ n$-hexane); $[\alpha]_{D}-74.9^{\circ}(c 0.7$, chloroform $)$.

Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{O}_{8} \mathrm{Si}_{2}$: $\mathrm{C}, 56.78 ; \mathrm{H}, 8.39$. Found: $\mathrm{C}, 56.93 ; \mathrm{H}, 8.42$.
p-Methoxyphenyl 2,3-Di-O-benzoyl-4,6-O-(1,1,3,3-tetraisopropyl-1,3-disiloxane-1,3-diyl)- $\boldsymbol{\beta}$-D-glucopyranoside (11). Benzoyl bromide (1.85 g , $10.0 \mathrm{mmol})$ was added to a solution of $10(1.0 \mathrm{~g}, 1.9 \mathrm{mmol})$ in pyridine $(30 \mathrm{~mL})$, the
resulting yellow suspension was stirred at room temp. for 24 h and at $60^{\circ} \mathrm{C}$ for 5 h . Water (5 mL) was added to the mixture and stirring was continued for 0.5 h . The mixture was diluted with water (200 mL), extracted with dichloromethane and the organic layers were washed with aqueous HCl and NaHCO_{3} solution. Concentration and chromatography of the residue gave 11 ($1.4 \mathrm{~g}, 100 \%$) as a colorless foam: $[\alpha]_{D}+40.8^{\circ}$ ($c 0.7$, chloroform).

Anal. Calcd for $\mathrm{C}_{3} 9 \mathrm{H}_{52} \mathrm{O}_{10} \mathrm{Si}_{2}$: C, $63.56 ; \mathrm{H}, 7.11$. Found: $\mathrm{C}, 63.70 ; \mathrm{H}, 7.16$.
Methyl 2-O-Benzoyl-4,6-O-(1,1,3,3-tetraisopropyl-1,3-disiloxane-1,3-diyl)- $\boldsymbol{\beta}$-D-glucopyranoside (13). Benzoyl chloride ($1.03 \mathrm{~g}, 7.3 \mathrm{mmol}$) was added to a solution of $12^{10}(1.31 \mathrm{~g}, 3.0 \mathrm{mmol})$ in pyridine (6 mL) and the mixture was stirred at room temp. for 20 min . Workup as described for the preparation of 11 gave 13 ($1.13 \mathrm{~g}, 70 \%$) as colorless crystals: $\mathrm{mp} 104-105^{\circ} \mathrm{C}$ (from acetone $/ n$-hexane); [$\left.\alpha\right]_{\mathrm{D}}-25.6^{\circ}(c$ 1.0 , chloroform).

Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{43} \mathrm{O}_{8} \mathrm{Si}_{2}$: $\mathrm{C}, 57.85 ; \mathrm{H}, 8.03$. Found: $\mathrm{C}, 57.57 ; \mathrm{H}, 8.09$.
Methyl 2-O-Benzoyl-6-O-dimethylthexylsilyl-3,4-O-(1,1,3,3-tetra-isopropyl-1,3-disiloxane-1,3-diyl)- α-D-glucopyranoside (17). Chlorodimethylthexylsilane ${ }^{31}(0.39 \mathrm{~g}, 2.2 \mathrm{mmol})$ was added dropwise at $0^{\circ} \mathrm{C}$ to a solution of $15{ }^{11}(0.87 \mathrm{~g}, 2.0 \mathrm{mmol})$ and imidazole ($0.27 \mathrm{~g}, 4.0 \mathrm{mmol}$) in DMF (10 mL) and the mixture was stirred at room temp. for 1 h . Water (200 mL) was added, the mixture was extracted with dichloromethane and the combined organic layers were washed with aqueous NaHCO_{3} solution. Concentration and filtration of the residue with ethyl acetate/ n-hexane (1:5) over a short column of silica gel gave crude 16 ($0.7 \mathrm{~g}, 60 \%$) as a viscous oil. Benzoyl chloride ($2.26 \mathrm{~g}, 16.0 \mathrm{mmol}$) in pyridine (10 mL) was added to crude 16 and the mixture was stirred at room temp. for 16 h . Workup as described for the preparation of 11 gave $17(0.71 \mathrm{~g}, 52 \%)$ as a colorless oil: $[\alpha] \mathrm{D}+88.3^{\circ}(c 0.6$, chloroform).

Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{62} \mathrm{O}_{8} \mathrm{Si}_{3}: \mathrm{C}, 59.78 ; \mathrm{H}, 9.15$. Found: C, 59.84; H, 9.30.
Methyl 2-O-Benzoyl-3-O-benzyl-4,6-O-(1,1,3,3-tetraisopropyl-1,3-disiloxane-1,3-diyl)- $\boldsymbol{\beta}$-D-glucopyranoside (20). A solution of 1,3-dichloro-1,1,3,3-tetraisopropyl-1,3-disiloxane ($1.12 \mathrm{~g}, 3.5 \mathrm{mmol}$) in dichloromethane (2 mL) was added dropwise at $0^{\circ} \mathrm{C}$ to a solution of $18^{32}(0.9 \mathrm{~g}, 3.2 \mathrm{mmol})$ and imidazole $(0.96 \mathrm{~g}, 14.1$ mmol) in DMF (20 mL) and the mixture was stirred at room temp. for 1 h . Workup as described for the preparation of 10 gave crude $19(1.24 \mathrm{~g}, 74 \%)$ as a viscous oil. Benzoyl chloride ($2.26 \mathrm{~g}, 16.0 \mathrm{mmol}$) was added to a solution of crude 19 in pyridine (50 mL) and the mixture was stirred for 2 h . Workup as described for the preparation of 11 gave 20 $(1.12 \mathrm{~g}, 55 \%)$ as a colorless foam: $[\alpha]_{\mathrm{D}}+28.0^{\circ}$ (c 0.6, chloroform).

Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{50} \mathrm{O}_{8} \mathrm{Si}_{2}$: C, $62.82 ; \mathrm{H}, 8.00$. Found: C, $62.73 ; \mathrm{H}, 8.10$.
Benzyl 2-O-Benzoyl-4,6-O-(1,1,3,3-tetraisopropyl-1,3-disiloxane-1,3-diyl)- α-D-mannopyranoside (23). Benzoyl chloride ($0.7 \mathrm{~g}, 5.0 \mathrm{mmol}$) was
added to a solution of $22^{10}(1.44 \mathrm{~g}, 2.8 \mathrm{mmol})$ in pyridine (20 mL) and the mixture was stirred at room temp. for 2 h . Workup as described for the preparation of 11 (without chromatography) afforded material which was crystallized from n-hexane to give $23(1.6 \mathrm{~g}$, 93%): $\mathrm{mp} 116^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+3.5^{\circ}$ (c 0.2 , chloroform).

Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{O}_{8} \mathrm{Si}_{2}$: C, $62.30 ; \mathrm{H}, 7.84$. Found: $\mathrm{C}, 62.16 ; \mathrm{H}, 8.06$.
Methyl 3-O-Benzyl-4,6-O-(1,1,3,3-tetraisopropyl-1,3-disiloxane-1,3-diyl)- β-D-galactopyranoside (27) and Methyl 3-O-Benzyl-6-O-(1-hydroxy-1,1,3,3-tetraisopropyl-1,3-disiloxane-3-yl)- $\boldsymbol{\beta}$-d-galactopyranoside (33). A solution of 1,3 -dichloro-1,1,3,3-tetraisopropyl-1,3-disiloxane ($0.87 \mathrm{~g}, 2.25 \mathrm{mmol}$) in dichloromethane (5 mL) was added dropwise at $0^{\circ} \mathrm{C}$ to a solution of $\mathbf{2 6}^{\mathbf{2 1}}(0.71 \mathrm{~g}, 2.5$ mmol) and imidazole ($1.25 \mathrm{~g}, 11.0 \mathrm{mmol}$) in DMF (10 mL) and the mixture was stirred at room temp. for 1 h . Workup as described for the preparation of $\mathbf{1 0}$ and chromatography gave first 27 ($0.55 \mathrm{~g}, 44 \%$) as colorless crystals: mp $73-75^{\circ} \mathrm{C}$ (n-hexane); $[\alpha]_{\mathrm{D}}+34.0^{\circ}$ (c 0.5 , chloroform).

Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{46} \mathrm{O}_{7} \mathrm{Si}_{2}: \mathrm{C}, 59.28 ; \mathrm{H}, 8.80$. Found: C, $59.53 ; \mathrm{H}, 8.90$.
Eluted next was $33(0.5 \mathrm{~g}, 42 \%)$ as colorless crystals: mp $46^{\circ} \mathrm{C}$ (n-hexane); [$\left.\alpha\right]_{\mathrm{D}}$ -8.0° (c 1.2 , chloroform).

Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{48} \mathrm{O}_{8} \mathrm{Si}_{2}$: C, 57.32; H, 8.88. Found: C, 57.29; H, 9.07.
Methyl 2-O-Benzoyl-3-O-benzyl-4,6-O-(1,1,3,3-tetraisopropyl-1,3-disiloxane-1,3-diyl)- $\boldsymbol{\beta}$-D-galactopyranoside (28). A solution of 1,3 -dichloro-1,1,3,3-tetraisopropyl-1,3-disiloxane ($0.87 \mathrm{~g}, 2.25 \mathrm{mmol}$) in dichloromethane (2 mL) was added dropwise at $0^{\circ} \mathrm{C}$ to a solution of $26(0.71 \mathrm{~g}, 2.5 \mathrm{mmol})$ in pyridine (5 mL), the mixture was stirred at room temp. for 12 h , diluted with water (200 mL) and extracted with dichloromethane. The organic layers were washed with aqueous HCl and NaHCO_{3} solution and concentrated to give crude $27(1.19 \mathrm{~g}, 90 \%)$ as a semicrystalline material. Benzoyl chloride ($3.0 \mathrm{~g}, 21.2 \mathrm{mmol}$) was added to a solution of crude 27 in pyridine (20 mL) and the mixture was stirred at room temp. for 5 h . Workup as described for the preparation of 11 gave $28(1.28 \mathrm{~g}, 81 \%)$ as a viscous oil: $[\alpha]_{\mathrm{D}}+32.8^{\circ}$ (c 0.2 , chloroform).

Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{50} \mathrm{O}_{8} \mathrm{Si}_{2}$: C, 62.82; H, 7.99. Found: C, $63.03 ; \mathrm{H}, 7.88$.
Benzyl 3-O-Benzoyl- $\boldsymbol{\beta}$-D-galactopyranoside (30). A suspension of 2933 ($1.35 \mathrm{~g}, 5.0 \mathrm{mmol}$) and dibutyltin oxide ($1.25 \mathrm{~g}, 5.0 \mathrm{mmol}$) in methanol (20 mL) was refluxed until a clearing of the solution (2 h). The solvent was evaporated, the residue resuspended in dioxane (20 mL) and benzoyl chloride $(0.78 \mathrm{~g}, 5.5 \mathrm{mmol}$) was added. The resulting solution was stirred at room temp. for 2 h and concentrated. Chromatography of the residue gave $30(1.07 \mathrm{~g}, 57 \%)$ as a colorless foam: $[\alpha]_{\mathrm{D}}+27.5^{\circ}$ (c 0.5 , methanol).

Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{7} 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 62.66 ; \mathrm{H}, 6.05$. Found: $\mathrm{C}, 62.66 ; \mathrm{H}$, 5.94.

Benzyl 2,3-Di-O-benzoyl-4,6-O-(1,1,3,3-tetraisopropyl-1,3-di-siloxane-1,3-diyl)- $\boldsymbol{\beta}$-D-galactopyranoside (32). A solution of 1,3-dichloro-$1,1,3,3$-tetraisopropyl-1,3-disiloxane ($1.01 \mathrm{~g}, 2.6 \mathrm{mmol}$) in dichloromethane (5 mL) was added dropwise at $0^{\circ} \mathrm{C}$ to a solution of $30(1.0 \mathrm{~g}, 2.6 \mathrm{mmol})$ in pyridine $(10 \mathrm{~mL})$ and the mixture was stirred at room temp. for 10 h . Workup as described for the preparation of $\mathbf{1 0}$ (without chromatography) gave crude 31 ($1.55 \mathrm{~g}, 97 \%$) as a viscous oil. Benzoyl chloride $(2.26 \mathrm{~g}, 16.0 \mathrm{mmol})$ was added to a solution of crude 31 in pyridine (20 mL) and the mixture was stirred for 3 h . Workup as described for the preparation of 11 gave 32 (1.77 $\mathrm{g}, 94 \%$) as a highly viscous oil: $[\alpha]_{\mathrm{D}}+23.0^{\circ}$ ($c 0.3$, chloroform).

Anal. Calcd for $\mathrm{C}_{39} \mathrm{H}_{52} \mathrm{OgSi}_{2}$: C, 64.97; H, 7.27. Found: C, 64.56; H, 7.32.
Methyl 2,4-Di-O-benzoyl-3-O-benzyl-6-O-(1-hydroxy-1,1,3,3-tetraisopropyl-1,3-disiloxane-3-yl)- β-D-galactopyranoside (34) and its Desilylation. a) Benzoyl chloride ($3.0 \mathrm{~g}, 21.2 \mathrm{mmol}$) was added to a solution of 33 ($0.45 \mathrm{~g}, 0.83 \mathrm{mmol}$) in pyridine (10 mL) and the mixture was stirred at room temp. for 2 h . Workup as described for the preparation of 11 gave $34(0.62 \mathrm{~g}, 99 \%)$ as a colorless foam: $[\alpha]_{\mathrm{D}}+77.1^{\circ}(c 1.2$, chloroform $)$.

Anal. Calcd for $\mathrm{C}_{40} \mathrm{H}_{56} \mathrm{O}_{10} \mathrm{Si}_{2}$: $\mathrm{C}, 63.80 ; \mathrm{H}, 7.50$. Found: $\mathrm{C}, 63.64 ; \mathrm{H}, 7.45$.
b) $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ was added to a solution of $34(0.53 \mathrm{~g}, 0.7 \mathrm{mmol})$ in methanol (10 mL) and the mixture was stirred at room temp. until TLC revealed complete conversion of the starting material into a single slower moving product (12 h). Dichloromethane (80 mL) was added and the resulting solution was washed with aqueous NaHCO_{3} solution. Concentration and chromatography of the residue gave methyl 2,4-di-O-benzoyl-3- O-benzyl- β-D-galactopyranoside ($0.3 \mathrm{~g}, 87 \%$) as a colorless foam: [α]D $+142^{\circ}(c 1.1$, chloroform $),[\alpha]_{\mathrm{D}}+147^{\circ}(c 1.4$, chloroform $) .{ }^{23}$

Phenyl 2,3,4,6-Tetra-O-acetyl-1-thio- β-D-glucopyranoside (6) and Phenyl $\quad O$-(2,3,4,6-Tetra-O-acetyl- β-D-glucopyranosyl)-(1-6)-2,3-di-O-benzoyl-4-O-(1-fluoro-1,1,3,3-tetraisopropyl-1,3-disiloxane-3-yl)-1-thio-β-D-glucopyranoside (35). $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(12 \mu \mathrm{~L}, 0.1 \mathrm{mmol})$ was added to a solution of $1 \mathrm{a}(0.42 \mathrm{~g}, 1.2 \mathrm{mmol})$ and $5^{10}(0.72 \mathrm{~g}, 1.0 \mathrm{mmol})$ in dichloromethane $(10 \mathrm{~mL})$ and the mixture was stirred at room temp. until TLC revealed the complete consumption of 5 (20 h). Workup as described for the preparation of compound $\mathbf{3}$ and chromatography gave first $35(0.68 \mathrm{~g}, 63 \%)$ as a colorless foam: $[\alpha] \mathrm{D}+60.9^{\circ}$ (c 0.6 , chloroform).

Anal. Calcd for $\mathrm{C}_{52} \mathrm{H}_{69} \mathrm{FO}_{17} \mathrm{SSi}_{2}$: $\mathrm{C}, 58.19 ; \mathrm{H}, 6.48 ; \mathrm{S}, 2.99$. Found: C, 57.77; H, 6.38; S, 2.75.

Eluted next was $6(50 \mathrm{mg}, 11 \%)$ as colorless crystals: $\mathrm{mp} 114^{\circ} \mathrm{C}$ (n-hexane), $\mathrm{mp}{ }^{34}$ $117-118^{\circ} \mathrm{C}$.

Phenyl O-(2,3,4,6-Tetra-O-acetyl- $\boldsymbol{\beta}$-D-glucopyranosyl)-($\mathbf{1 \rightarrow 6} \mathbf{- 6} \mathbf{- 2 , 3 - d i -}$ O-benzoyl-1-thio- $\boldsymbol{\beta}$-D-glucopyranoside (36). Bu4NF. $3 \mathrm{H}_{2} \mathrm{O}$ ($15 \mathrm{mg}, 0.05 \mathrm{mmol}$) was added to a solution of $35(0.11 \mathrm{~g}, 0.1 \mathrm{mmol}$) in THF (5 mL) and the solution was stirred until TLC showed the complete conversion of the starting material into a single slower moving product (5 min). Concentration and chromatography of the residue gave 36 ($62 \mathrm{mg}, 84 \%$) as a colorless foam: $\{\alpha]_{\mathrm{D}}+30.9^{\circ}$ ($c 0.1$, chloroform).

Anal. Calcd for $\mathrm{C}_{40} \mathrm{H}_{42} \mathrm{O}_{16} \mathrm{~S}: \mathrm{C}, 59.25 ; \mathrm{H}, 5.22$. Found: C, $59.27 ; \mathrm{H}, 5.24$.
Ethyl 2,3,4,6-Tetra-O-acetyl-1-thio- β-D-glucopyranoside (8) and Ethyl $\quad O$-($2,3,4,6-$ Tetra- O-acetyl- β-D-glucopyranosyl)-(1 $\rightarrow 6$)-2,3-di- O -benzoyl-4-O-(1-fluoro-1,1,3,3-tetraisopropyl-1,3-disiloxane-3-yl)-1-thio-$\boldsymbol{\beta}$-d-glucopyranoside (37). $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(86 \mu \mathrm{~L}, 0.72 \mathrm{mmol})$ was added to a solution of $1 \mathrm{a}(0.84 \mathrm{~g}, 2.4 \mathrm{mmol})$ and $7^{10}(1.61 \mathrm{~g}, 2.39 \mathrm{mmol})$ in dichloromethane $(20 \mathrm{~mL})$ and the mixture was stirred at room temp. until TLC revealed the complete consumption of 7 (62 h). Workup as described for the preparation of compound $\mathbf{3}$ and chromatography gave first 37 ($1.71 \mathrm{~g}, 70 \%$) as a coloriess foam: $[\alpha] \mathrm{D}+27.6^{\circ}$ (c 0.5 , chloroform).

Anal. Calcd for $\mathrm{C}_{48} \mathrm{H}_{69} \mathrm{FO}_{17} \mathrm{SSi}_{2}$: $\mathrm{C}, 56.23 ; \mathrm{H}, 6.78$. Found: $\mathrm{C}, 56.28 ; \mathrm{H}, 6.71$.
Eluted next was 8 ($94 \mathrm{mg}, 10 \%$) as colorless crystals: $\mathrm{mp} 78^{\circ} \mathrm{C}$ (n-hexane), mp ${ }^{35}$ $78.5-79.5^{\circ} \mathrm{C}$.
p-Methoxyphenyl $\quad O$-(2,3,4,6-Tetra- O-acetyl- β-D-glucopyranosyl)($1 \rightarrow 6$)-2,3-di-O-benzoyl-4-O-(1-fluoro-1,1,3,3-tetraisopropyl-1,3-disilox-ane-3-yl)- $\boldsymbol{\beta}$-D-glucopyranoside (38). A solution of $\mathrm{BF}_{3} \mathrm{Et}_{2} \mathrm{O}(6 \mu \mathrm{~L}, 0.05 \mathrm{mmol})$, $1 \mathrm{a}(175 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $11(310 \mathrm{mg}, 0.42 \mathrm{mmol})$ in dichloromethane (5 mL) was processed for 14 h as described for the preparation of compound 35 to give $38(310 \mathrm{mg}$, 68%) as a colorless foam: $[\alpha]_{\mathrm{D}}+48.1^{\circ}$ ($c 0.8$, chloroform).

Anal. Calcd for $\mathrm{C}_{53} \mathrm{H}_{71} \mathrm{FO}_{19} \mathrm{Si}_{2}: \mathrm{C}, 58.55 ; \mathrm{H}, 6.58$. Found: C, $58.00 ; \mathrm{H}, 6.57$.
\boldsymbol{p}-Methoxyphenyl $\quad O$-(2,3,4,6-Tetra- O-acetyl- β-D-glucopyranosyl)($\mathbf{1 \rightarrow 6}$)-2,3-di-O-benzoyl- $\boldsymbol{\beta}$-D-glucopyranoside (39). A solution of $\mathrm{Bu}_{4} \mathrm{NF} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ ($0.1 \mathrm{~g}, 0.32 \mathrm{mmol}$) and $38(0.21 \mathrm{~g}, 0.19 \mathrm{mmol})$ in THF (20 mL) was processed as described for the preparation of compound 36 to give 39 ($0.12 \mathrm{~g}, 77 \%$) as colorless crystals: $\operatorname{mp} 90^{\circ} \mathrm{C}$ (n-hexane); $[\alpha]_{\mathrm{D}}+34.6^{\circ}$ (c 0.3 , chloroform).

Anal. Calcd for $\mathrm{C}_{41} \mathrm{H}_{44} \mathrm{O}_{18}: \mathrm{C}, 59.70 ; \mathrm{H}, 5.38$. Found: $\mathrm{C}, 59.67 ; \mathrm{H}, 5.39$.
Methyl $\quad O$-(2,3,4,6-Tetra-O-acetyl- β-D-glucopyranosyl)-(1 $\rightarrow 6$)-2-O-benzoyl-3-O-benzyl-4-O-(1-fluoro-1,1,3,3-tetraisopropyl-1,3-disiloxane-3$\mathbf{y l})$ - $\boldsymbol{\beta}$-D-glucopyranoside (40). A solution of $\mathrm{BF}_{3} \mathrm{Et}_{2} \mathrm{O}(40 \mu \mathrm{~L}, 0.3 \mathrm{mmol})$, 1 a (0.53 g, 1.5 mmol) and $20(0.88 \mathrm{~g}, 1.4 \mathrm{mmol})$ in dichloromethane (20 mL) was processed for 48
h as described for the preparation of compound 35 to give $\mathbf{4 0}(0.9 \mathrm{~g}, 66 \%)$ as a colorless foam: $[\alpha]_{D}+15.9^{\circ}$ (c 0.3, chloroform).

Anal. Calcd for $\mathrm{C}_{47} \mathrm{H}_{69} \mathrm{FO}_{17} \mathrm{Si}_{2}: \mathrm{C}, 57.53 ; \mathrm{H}, 7.09$. Found: $\mathrm{C}, 57.78 ; \mathrm{H}, 7.04$.
Methyl \boldsymbol{O}-(2,3,4,6-Tetra-O-acetyl- β-D-glucopyranosyl)-(1 $\boldsymbol{\rightarrow} \mathbf{6}$)-2-O-benzoyl-3-O-benzyl- $\boldsymbol{\beta}$-D-gluropyranoside (41). A solution of $\mathrm{Bu}_{4} \mathrm{NF} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.1$ $\mathrm{g}, 0.32 \mathrm{mmol})$ and $40(0.26 \mathrm{~g}, 0.27 \mathrm{mmol})$ in THF (5 mL) was processed as described for the preparation of compound 36 to give $41(0.17 \mathrm{~g}, 88 \%)$ as a colorless foam: $[\alpha]_{\mathrm{D}}-9.1^{\circ}$ (c 0.2, chloroform).

Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{42} \mathrm{O}_{16}$: C, $58.49 ; \mathrm{H}, 5.89$. Found: $\mathrm{C}, 58.69 ; \mathrm{H}, 5.90$.
Methyl $\quad O$-(2,3,4,6-Tetra-O-acetyl- β-D-glucopyranosyl)-(1 $\rightarrow 6$)-2-O. benzoyl-4-O-(1-fluoro-1,1,3,3-tetraisopropyl-1,3-disiloxane-3-yl)- β-D-glucopyranoside (42). A solution of $\mathrm{BF}_{3} \cdot \mathrm{El}_{2} \mathrm{O}(36 \mu \mathrm{~L}, 0.3 \mathrm{mmol}), 1 \mathrm{a}(1.05 \mathrm{~g}, 3.0 \mathrm{mmol})$ and $13(1.61 \mathrm{~g}, 2.85 \mathrm{mmol}$) in dichloromethane (20 mL) was processed for 24 h as described for the preparation of compound 35 to give $42(1.51 \mathrm{~g}, 59 \%)$ as a colorless foam: $[\alpha]_{D}-7.9^{\circ}$ (c 0.8 , chloroform).

Anal. Calcd for $\mathrm{C}_{40} \mathrm{H}_{63} \mathrm{FO}_{17} \mathrm{Si}_{2}: \mathrm{C}, 53.92 ; \mathrm{H}, 7.13$. Found: C, $54.15 ; \mathrm{H}, 7.20$.
Methyl O-(2,3,4,6-Tetra-O-acetyl- $\boldsymbol{\beta}$-D-glucopyranosyl)-(1 $\boldsymbol{\rightarrow} \mathbf{6}$)-2-O-benzoyl- $\boldsymbol{\beta}$-D-glucopyranoside (43). A solution of $\mathrm{Bu}_{4} \mathrm{NF} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.13 \mathrm{~g}, 0.4 \mathrm{mmol})$ and $42(0.36 \mathrm{~g}, 0.4 \mathrm{mmol})$ in THF (10 mL) was processed as described for the preparation of compound 36 to give 43 ($0.25 \mathrm{~g}, 99 \%$) as a colorless foam: $[\alpha]_{\mathrm{D}}-30.9^{\circ}$ (c 0.3 , chloroform).

Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{O}_{16}$: C, $53.50 ; \mathrm{H}, 5.77$. Found: C, $53.34 ; \mathrm{H}, 5.83$.
Benzyl O-(2,3,4,6-Tetra-O-acetyl- β-D-glucopyranosyl)-(1 $\rightarrow 6$)-2-
acetamido-3-O-benzoyl-2-deoxy-4-O-(1-fluoro-1,1,3,3-tetraisopropyl-1,3-
disiloxane-3-yl)- α-D-glucopyranoside (44). A solution of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(6 \mu \mathrm{~L}, 0.05$ mmol), 1 a ($175 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $21^{10}(329 \mathrm{mg}, 1.4 \mathrm{mmol})$ in dichloromethane (10 mL) was processed for 3 days as described for the preparation of compound 35 to give 44 (0.3 $\mathrm{g}, 60 \%$) as a colorless foam: $[\alpha]_{\mathrm{D}}+56.7^{\circ}$ (c 1.3, chloroform).

Anal. Calcd for $\mathrm{C}_{48} \mathrm{H}_{70} \mathrm{FNO}_{17} \mathrm{Si}_{2}$: $\mathrm{C}, 57.18 ; \mathrm{H}, 6.99 ; \mathrm{N}, 1.39$. Found: C, 57.02; H, 7.13; N, 1.51 .

Benzyl O-(2,3,4,6-Tetra-O-acetyl- β-D-glucopyranosyl)-(1 $\boldsymbol{\rightarrow}$ 6)-2-acetamido-3- O-benzoyl-2-deoxy- α-D-glucopyranoside (45). A solution of Bu4NF. $3 \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{~g}, 0.32 \mathrm{mmol})$ and $44(0.21 \mathrm{~g}, 0.21 \mathrm{mmol})$ in THF (5 mL) was processed as described for the preparation of compound 36 to give 45 ($0.15 \mathrm{~g}, 96 \%$) as a colorless foam: $[\alpha]_{\mathrm{D}}+49.6^{\circ}$ (c 0.8 , chloroform).

Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{43} \mathrm{NO}_{16}: \mathrm{C}, 57.98 ; \mathrm{H}, 5.81 ; \mathrm{N}, 1.88$. Found: C, $57.54 ; \mathrm{H}$, 5.85; N, 1.71.

Benzyl O-(2,3,4,6-Tetra-O-acetyl- β-D-glucopyranosyl)-(1 \boldsymbol{O} 6)-2,3-di-O-benzoyl-4-O-(1-fluoro-1,1,3,3-tetrais opropyl-1,3-disiloxane-3-yl)- α -D-mannopyranoside (46). a) A solution of $\mathrm{BF}_{3} \mathrm{Et}_{2} \mathrm{O}(6 \mu \mathrm{~L}, 0.05 \mathrm{mmol})$, $\mathbf{1 a}(175 \mathrm{mg}$, $0.5 \mathrm{mmol})$ and $24^{10}(360.5 \mathrm{mg}, 0.5 \mathrm{mmol})$ in dichloromethane (10 mL) was processed for 24 h as described for the preparation of compound 35 to give 46 ($500 \mathrm{mg}, 93 \%$) as colorless crystals: $\mathrm{mp} 115^{\circ} \mathrm{C}$ (n-hexane); [$\left.\alpha\right]_{\mathrm{D}}-20.5^{\circ}$ (c 0.2 , chloroform).

Anal. Calcd for $\mathrm{C}_{53} \mathrm{H}_{71} \mathrm{FO}_{18} \mathrm{Si}_{2}$: C, $59.42 ; \mathrm{H}, 6.68$. Found: $\mathrm{C}, 59.25 ; \mathrm{H}, 6.66$.
b) A solution of $6936(246.3 \mathrm{mg}, 0.5 \mathrm{mmol})$ in dichloromethane (1 mL) was added at $-20^{\circ} \mathrm{C}$ to a solution of $65(300 \mathrm{mg}, 0.4 \mathrm{mmol}$, see below) and trimethylsilyl trifluoromethanesulfonate ($6.6 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$) in dichloromethane (2 mL) and the mixture was stirred at $-20^{\circ} \mathrm{C}$ for 0.5 h . The solution was washed with aqueous NaHCO_{3} solution and concentrated. Chromatography of the residue gave 46 ($334 \mathrm{mg}, 78 \%$).

Benzyl O-(2,3,4,6-Tetra-O-acetyl- β-D-glucopyranosyl)-($\mathbf{1 \rightarrow 6}$)-2,3-di-\boldsymbol{O}-benzoyl- $\boldsymbol{\alpha}$-D-mannopyranoside (47). A solution of $\mathrm{Bu}_{4} \mathrm{NF} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.15 \mathrm{~g}, 0.48$ mmol) and 46 ($0.54 \mathrm{~g}, 0.5 \mathrm{mmol}$) in THF (10 mL) was processed as described for the preparation of compound 36 to give $47(0.31 \mathrm{~g}, 76 \%)$ as a colorless foam: $[\alpha]_{\mathrm{D}}-23.2^{\circ}(c$ 0.2 , chloroform).

Anal. Calcd for $\mathrm{C}_{41} \mathrm{H}_{44} \mathrm{O}_{17}: \mathrm{C}, 60.98 ; \mathrm{H}, 5.48$. Found: C, $60.99 ; \mathrm{H}, 5.58$.
Benzyl O-(2,3,4,6-Tetra-O-acetyl- β-D-glucopyranosyl)-(1 $\boldsymbol{O} \mathbf{6}$)-2-O-benzoyl-4-O-(1-fluoro-1,1,3,3-tetrais opropyl-1,3-disiloxane-3-yl)- α-Dmannopyranoside (48). A solution of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(6 \mu \mathrm{~L}, 0.05 \mathrm{mmol}$), 1 a ($175 \mathrm{mg}, 0.5$ mmol) and 23 ($308.5 \mathrm{mg}, 0.5 \mathrm{mmol}$) in dichloromethane (10 mL) was processed for 24 h as described for the preparation of compound 35 to give 48 ($410 \mathrm{mg}, 85 \%$) as a colorless foam: $[\alpha]_{\mathrm{D}}+13.3^{\circ}$ (c 0.2 , chloroform).

Anal. Calcd for $\mathrm{C}_{46} \mathrm{H}_{67} \mathrm{FO}_{17} \mathrm{Si}_{2}$: C, 57.12; H, 6.98. Found: C, 57.14; H, 7.01 .
Benzyl O-(2,3,4,6-Tetra-O-acetyl- β-D-glucopyranosyl)-(1 \boldsymbol{O})-2-O-benzoyl- α-D-mannopyranoside (49). A solution of $\mathrm{Bu}_{4} \mathrm{NF} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.15 \mathrm{~g}, 0.48$ mmol) and 48 ($0.8 \mathrm{~g}, 0.83 \mathrm{mmol}$) in THF (20 mL) was processed as described for the preparation of compound 36 to give $49(0.51 \mathrm{~g}, 87 \%)$ as a colorless foam: $[\alpha]_{\mathrm{D}} 0.0^{\circ}$, $[\alpha]_{365}+13.6^{\circ}$ (c 1.0, chloroform).

Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{O}_{16}: \mathrm{C}, 57.95 ; \mathrm{H}, 5.72$. Found: C, 57.95 ; $\mathrm{H}, 5.86$.
Methyl O-(2,3,4,6-Tetra-O-acetyl- β-D-glucopyranosyl)-($\mathbf{1 \rightarrow 6}$)-2,3-di-O-benzoyl-4-O-(1-fluoro-1,1,3,3-tetraisopropyl-1,3-disiloxane-3-yl)- α-Dgalactopyranoside (50). A solution of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(10 \mu \mathrm{~L}, 0.08 \mathrm{mmol}), 1 \mathrm{a}(0.21 \mathrm{~g}, 0.6$ $\mathrm{mmol})$ and $25^{10}(0.35 \mathrm{~g}, 0.58 \mathrm{mmol})$ in dichloromethane (5 mL) was processed for 6 h as described for the preparation of compound 35 to give 50 ($0.45 \mathrm{~g}, 93 \%$) as a colorless foam: $[\alpha]_{\mathrm{D}}+58.9^{\circ}$ (c 0.4, chloroform).

Anal. Calcd for $\mathrm{C}_{47} \mathrm{H}_{67} \mathrm{FO}_{18} \mathrm{Si}_{2}: \mathrm{C}, 56.72 ; \mathrm{H}, 6.78$. Found: C, $56.44 ; \mathrm{H}, 6.82$.
Methyl O-(2,3,4,6-Tetra- O-acetyl- $\boldsymbol{\beta}$-D-glucopyranosyl)-(1 $\boldsymbol{1 \rightarrow 6}$)-2,3-di-O-benzoyl- α-D-galactopyranoside and Methyl O - $(2,3,4,6$-Tetra- O-acetyl- β -D-glucopyranosyl)-(1 $\rightarrow 6$)-2,4-di-O-benzoyl- α-D-galactopyranoside (51). A solution of Bu4NF. $3 \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{~g}, 0.32 \mathrm{mmol})$ and $50(0.28 \mathrm{~g}, 0.28 \mathrm{mmol})$ in THF (10 $\mathrm{mL})$ was processed as described for the preparation of compound 36 to give $51(0.2 \mathrm{~g}$, 97%) as an unseparated $1: 2$ mixture of the 3 - and 4 - O-benzoylated derivative: ${ }^{1} \mathrm{H}$ NMR δ (significant peaks): 51 (3-O-benzoate) 4.54 (d, $1 \mathrm{H}, J_{1,2}=7.9 \mathrm{~Hz}, \mathrm{H}-1$), 4.35 (bs, 1 H , $\mathrm{H}-4), 3.40$ (s, 3H, OMe); 51 (4-O-benzoate) 4.64 (d, $1 \mathrm{H}, J_{1,2}=7.9 \mathrm{~Hz}, \mathrm{H}-1^{\prime}$), 5.66 (bd, $1 \mathrm{H}, \mathrm{H}-4$), 3.41 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$); ${ }^{13} \mathrm{C}$ NMR δ (significant peaks): 51 (3-O-benzoate) 100.9 ($\mathrm{C}-1^{\prime}$), 97.3 (C-1); 51 (4-O-benzoate) 101.0 ($\mathrm{C}-1$ '), 97.4 ($\mathrm{C}-1$).

Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{O}_{17}: \mathrm{C}, 57.38 ; \mathrm{H}, 5.50$. Found: C, $57.20 ; \mathrm{H}, 5.57$.
Methyl O-(2,3,4,6-Tetra- O-acetyl- $\boldsymbol{\beta}$-D-glucopyranosyl)-($\mathbf{1 \rightarrow 6}$)-2,3,4-tri- \boldsymbol{O}-benzoyl- $\boldsymbol{\alpha}$-D-galactopyranoside (52). Benzoyl chloride ($0.7 \mathrm{~g}, 4.9 \mathrm{mmol}$) was added to a solution of $51(165 \mathrm{mg}, 0.23 \mathrm{mmol})$ in pyridine (10 mL) and the mixture was stirred at room temp. for 4 h . Workup as described for the preparation of 11 gave 52 ($160 \mathrm{mg}, 83 \%$) as a colorless foam: $[\alpha]_{\mathrm{D}}+133.5^{\circ}(c 0.4$, chloroform).

Anal. Calcd for $\mathrm{C}_{42} \mathrm{H}_{44} \mathrm{O}_{18}$: C, 60.28; H, 5.30. Found: C, $60.04 ; \mathrm{H}, 5.20$.
Methyl $\quad \boldsymbol{O -}(\mathbf{2 , 3 , 4 , 6}$-Tetra-O-acetyl- $\boldsymbol{\beta}$-D-glucopyranosyl)-(1 \rightarrow 6)-2-O-benzoyl-3-O-benzyl-4-O-(1-fluoro-1,1,3,3-tetraisopropyl-1,3-disiloxane-3-yI)- β-D-galactopyranoside (53), Methyl \boldsymbol{O}-(2,3,4,6-Tetra-O-acetyl- $\boldsymbol{\beta}$-D-glucopyranosyl)-(1-6)-2-O-benzoyl-3-O-benzyl- β-D-galactopyranoside
(54) and Methyl 6-O-Acetyl-2-O-benzoyl-3-O-benzyl-4-O-(1-fluoro-1,1,3,3-tetraisopropyl-1,3-disiloxane-3-yl)- $\boldsymbol{\beta}$-D-galactopyranoside (71). a) A solution of $\mathrm{BF}_{3} \cdot \mathrm{El}_{2} \mathrm{O}(6 \mu \mathrm{~L}, 0.05 \mathrm{mmol}), 1 \mathrm{a}(125 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $28(315.5 \mathrm{mg}$, 0.5 mmol) in dichloromethane (5 mL) was processed for 3 days as described for the preparation of compound 35. Chromatography gave first $53(98.1 \mathrm{mg}, 20 \%)$ as a colorless foam: $[\alpha]_{\mathrm{D}}+13.0^{\circ}$ (c 0.2 , chloroform).

Anal. Calcd for $\mathrm{C}_{47} \mathrm{H}_{69} \mathrm{FO}_{17} \mathrm{Si}_{2}$: C, $57.53 ; \mathrm{H}, 7.09$. Found: C, $57.22 ; \mathrm{H}, 7.09$.
Eluted next was 54 ($79.1 \mathrm{mg}, 22 \%$) as a colorless foam: $[\alpha]_{\mathrm{D}}-4.2^{\circ}$ (c 0.2 , chloroform).

Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{42} \mathrm{O}_{16}$: $\mathrm{C}, 58.49$; $\mathrm{H}, 5.89$. Found: C, 58.45 ; $\mathrm{H}, 5.93$.
b) A solution of $6932(0.34 \mathrm{~g}, 0.69 \mathrm{mmol})$ in dichloromethane $(2 \mathrm{~mL})$ was added at $-20^{\circ} \mathrm{C}$ to a solution of $70(0.42 \mathrm{~g}, 0.65 \mathrm{mmol}$, see below) and trimethylsilyl trifluoromethanesulfonate ($10 \mu \mathrm{~L}, 0.07 \mathrm{mmol}$) in dichloromethane (8 mL) and the mixture was stirred at $-20^{\circ} \mathrm{C}$ for 0.5 h . The solution was neutralized with pyridine and worked up
as described for the preparation of compound 46 (b). Chromatography gave first 71 (77.2 $\mathrm{mg}, 17 \%$) as a colorless oil: $[\alpha]_{\mathrm{D}}+30.3^{\circ}$ (c 0.3 , chloroform).

Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{53} \mathrm{FO}_{9} \mathrm{Si}_{2}$: C, $60.66 ; \mathrm{H}, 7.71$. Found: $\mathrm{C}, 60.86 ; \mathrm{H}, 7.75$.
Eluted next was compound 53 ($0.45 \mathrm{~g}, 70 \%$).
c) A solution of $\mathrm{Bu}_{4} \mathrm{NF} \cdot 3 \mathrm{H}_{2} \mathrm{O}(94.6 \mathrm{mg}, 0.3 \mathrm{mmol})$ and 53 ($258 \mathrm{mg}, 0.26 \mathrm{mmol}$) in THF (2 mL) was processed as described for the preparation of compound 36 to give compound 54 ($143.7 \mathrm{mg}, 77 \%$).

Methyl $\quad O$-($2,3,4,6$-Tetra- O-acetyl- β-D-glucopyranosyl)-($1 \rightarrow 4$)-O-(2,3,6-tri- O-acetyl- β-D-glucopyranosyl)-(1 $\rightarrow 6$)-2-O-benzoyl-3,4-O-(1,1,3, 3-tetraisopropyl-1,3-disiloxane-1,3-diyl)- α-D-glucopyranoside (55). A solution of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(12 \mu \mathrm{~L}, 0.1 \mathrm{mmol}), 1 \mathrm{c}(0.51 \mathrm{~g}, 0.8 \mathrm{mmol})$ and $17(0.49 \mathrm{~g}, 0.72$ mmol) in dichloromethane (10 mL) was processed for 2.5 h as described for the preparation of compound 3.5 to give $55\left(0.51 \mathrm{~g}, 61 \%\right.$) as a colorless foam: $[\alpha] \mathrm{D}+37.7^{\circ}$ (c 0.3, chloroform).

Anal. Calcd for $\mathrm{C}_{52} \mathrm{H}_{78} \mathrm{O}_{25} \mathrm{Si}_{2}$: $\mathrm{C}, 53.87$; $\mathrm{H}, 6.78$. Found: $\mathrm{C}, 53.88 ; \mathrm{H}, 6.89$.
Methyl $\quad \boldsymbol{O}$-(2,3,4,6-Tetra-O-acetyl- $\boldsymbol{\beta}$-D-glucopyranosyl)-(1 $\boldsymbol{\rightarrow} \mathbf{4}$)-O-(2,3,6-tri-O-acetyl- β-D-glucopyranosyl)-($\mathbf{1 \rightarrow 6}$)-2-O-benzoyl- α-D-glucopyranoside (56). Pyridine-polyhydrogen fluoride ($50 \mu \mathrm{~L}, 1.8 \mathrm{mmol}$) was added to a solution of 55 ($230 \mathrm{mg}, 0.2 \mathrm{mmol}$) in dichloromethane (5 mL) and the mixture was stirred at room temp. until TLC revealed the complete conversion of the starting material into a single slower moving product (24 h). Workup as described for the preparation of compound 35 (without chromatography) gave a material which was crystallized from ethyl acetate/ n-hexane to give 56 ($180 \mathrm{mg}, 98 \%$): $\mathrm{mp} 211^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+14.7^{\circ}$ (c 0.2 , chloroform).

Anal. Calcd for $\mathrm{C}_{40} \mathrm{H}_{52} \mathrm{O}_{24} \mathrm{C}, 52.40 ; \mathrm{H}, 5.72$. Found: C, $52.32 ; \mathrm{H}, 5.69$.
Methyl $\quad O$-(2,3,4,6-Tetra-O-acetyl- β-D-glucopyranosyl)-($1 \rightarrow 4$)-O($2,3,6$-tri-O-acetyl- β-D-glucopyranosyl)-($1 \rightarrow 6$)-2,3-di-O-benzoyi-4-O-(1-fluoro-1,1,3,3-tetraisopropyl-1,3-disiloxane-1,3-diyl)- α-D-glucopyranoside (57). A solution of $\mathrm{BF}_{3} \mathrm{Et}_{2} \mathrm{O}(3 \mu \mathrm{~L}, 0.025 \mathrm{mmol}), 1 \mathrm{c}(190 \mathrm{mg}, 0.3 \mathrm{mmol})$ and 2^{11} (161 $\mathrm{mg}, 0.25 \mathrm{mmol}$) in dichloromethane (2.5 mL) was processed for 24 h as described for the preparation of compound 35 to give 57 ($236.7 \mathrm{mg}, 74 \%$) as a colorless foam: $[\alpha]_{\mathrm{D}}+35.1^{\circ}$ (c 0.7, chloroform).

Anal. Calcd for $\mathrm{C}_{59} \mathrm{H}_{83} \mathrm{FO}_{26} \mathrm{Si}_{2}$: C, 55.51 ; H, 6.52. Found: C, 55.27 ; H, 6.57.
Methyl $\quad O$-(2,3,4,6-Tetra-O-acetyl- β-D-glucopyranosyl)-(1 $\rightarrow 4$)-O-(2,3,6-tri- α-acetyl- $\boldsymbol{\beta}$-D-glucopyranosyl)-($1 \rightarrow 6$)-2,3-di-O-benzoyl- α-D-gluco-pyranoside (58). A solution of $\mathrm{Bu}_{4} \mathrm{NF} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.01 \mathrm{~g}, 0.03 \mathrm{mmol})$ and 57 (180 $\mathrm{mg}, 0.14 \mathrm{mmol}$) in THF (5 mL) was processed as described for the preparation of
compound 36 to give 58 ($135 \mathrm{mg}, 95 \%$) as a colorless foam: $[\alpha] \mathrm{D}+44.8^{\circ}$ (c 0.6 , chloroform).

Anal. Calcd for $\mathrm{C}_{47} \mathrm{H}_{56} \mathrm{O}_{25}$: C, 55.29 ; H, 5.53. Found: C, $55.55 ; \mathrm{H}, 5.51$.
Benzyl O-(2,3,4,6-Tetra-O-acetyl- β-D-galactopyranosyl)-(1 $\rightarrow 6$)-2,3-di- O-benzoyl-4- O-(1 -fluoro-1,1,3,3-tetraisopropyl-1,3-disiloxane-3-yl)- $\boldsymbol{\beta}$ -D-galactopyranoside (59). A solution of $\mathrm{BF}_{3} \mathrm{Et}_{2} \mathrm{O}(123 \mu \mathrm{~L}, 1.0 \mathrm{mmol})$, $\mathbf{1 d}(0.2 \mathrm{~g}$, $0.57 \mathrm{mmol})$ and $32(0.41 \mathrm{~g}, 0.57 \mathrm{mmol}$) in dichloromethane (4 mL) was processed for 0.5 h as described for the preparation of compound $\mathbf{3 5}$ to give $59(0.32 \mathrm{~g}, 53 \%)$ as a colorless foam: $[\alpha]_{\mathrm{D}}+2.7^{\circ}$ ($c 0.4$, chloroform).

Anal. Calcd for $\mathrm{C}_{53} \mathrm{H}_{71} \mathrm{FO}_{18} \mathrm{Si}_{2}$: C, 59.42; H, 6.68. Found: C, 59.29; H, 6.62 .
Benzyl $\quad O$-(2,3,4,6-Tetra-O-acetyl- β-D-galactopyranosyl)-($1 \rightarrow 6$)-2,3,4-tri- \boldsymbol{O}-benzoyl- $\boldsymbol{\beta}$-D-galactopyranoside (60). A solution of $\mathrm{Bu}_{4} \mathrm{NF} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ ($0.01 \mathrm{~g}, 0.03 \mathrm{mmol}$) and $59(242 \mathrm{mg}, 0.27 \mathrm{mmol})$ in THF (5 mL) was processed as described for the preparation of compound 36 to give material that was treated with benzoyl chioride ($1.2 \mathrm{~g}, 8.5 \mathrm{mmol}$) in pyridine (4 mL) for 2 h at room temp. Water (100 mL) was added to the solution and the resulting mixture was extracted with dichloromethane. The combined organic layers were washed with aqueous HCl and NaHCO_{3} solution, concentrated, and the residue was chromatographed to give $60(176.2 \mathrm{mg}, 85 \%)$ as a colorless foam: $[\alpha]_{\mathrm{D}}+79.4^{\circ}$ ($c 0.5$, chloroform).

Anal. Calcd for $\mathrm{C}_{48} \mathrm{H}_{48} \mathrm{O}_{18}$: C, 63.15; H, 5.30. Found: C, 62.94; H, 5.35.
4,6-O-(1,1,3,3-Tetraisopropyl-1,3-disiloxane-1,3-diyl)- α-D-glucopyranosyl Fluoride (61). A solution of 1,3-dichloro-1,1,3,3-tetraisopropyl-1,3disiloxane ($3.47 \mathrm{~g}, 11.0 \mathrm{mmol}$) in dichloromethane (10 mL) was added dropwise at $0^{\circ} \mathrm{C}$ to a solution of α-D-glucopyranosyl fluoride ($1.82 \mathrm{~g}, 10.0 \mathrm{mmol}$) and imidazole ($3.0 \mathrm{~g}, 44.0$ mmol) in DMF (20 mL) and the mixture was stirred at room temp. for 0.5 h . Workup as described for the preparation of 10 gave 61 ($3.26 \mathrm{~g}, 78 \%$) as a viscous oil: $[\alpha]_{\mathrm{D}}+57.0^{\circ}$ (c 0.2 , chloroform).

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{37} \mathrm{FO}_{6} \mathrm{Si}_{2}$: C, $50.93 ; \mathrm{H}, 8.78$. Found: $\mathrm{C}, 50.82 ; \mathrm{H}, 8.73$.
2,3-Di-O-benzoyl-4,6-O-(1,1,3,3-tetraisopropyl-1,3-disiloxane-1,3-diyl)- $\boldsymbol{\alpha}$-D-glucopyranosyl Fluoride (62). Benzoyl bromide ($1.67 \mathrm{~g}, 9.0 \mathrm{mmol}$) was added to a solution of $61(1.14 \mathrm{~g}, 2.7 \mathrm{mmol}$) in pyridine (20 mL) and the mixture was stirred at room temp. for 1 h and at $60^{\circ} \mathrm{C}$ for 5 h . Workup as described for the preparation of 11 gave $62(1.50 \mathrm{~g}, 88 \%)$ as a colorless foam: $[\alpha] \mathrm{D}+76.7^{\circ}(c 0.5$, chloroform).

Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{45} \mathrm{FO}_{8} \mathrm{Si}_{2}$: C, $60.73 ; \mathrm{H}, 7.17$. Found: $\mathrm{C}, 60.66 ; \mathrm{H}, 7.26$.

> 2,3-Di-O-benzoyl-4,6-O-(1,1,3,3-tetraisopropyl-1,3-disiloxane-1,3- diy1)- $\boldsymbol{\alpha}$-D-glucopyranosyl Chloride (63). A suspension of 14^{10} ($129.0 \mathrm{mg}, 0.2$ mmol) and a catalytic amount of ZnCl_{2} (ca. 5 mg) in $4: 1$ chloroform/dichloromethyl methyl
ether (2 mL) was stirred at 4()$-45^{\circ} \mathrm{C}$ until TLC revealed complete conversion of the starting material into a single faster moving product (3 h). Concentration and chromatography of the residue gave 63 ($117.6 \mathrm{mg}, 90 \%$) as a viscous oil: $\left[\left.\alpha\right|_{\mathrm{D}}+127.3^{\circ}\right.$ (c 0.4 , chloroform).

Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{45} \mathrm{ClO}_{8} \mathrm{Si}_{2}: \mathrm{C}, 59.19 ; \mathrm{H}, 6.99 ; \mathrm{Cl}, 5.46$. Found: $\mathrm{C}, 59.38$; $\mathrm{H}, 7.08 ; \mathrm{Cl}, 5.72$.

Methyl $\quad O$-[2,3-Di-O-benzoyl-4,6-O-(1,1,3,3-tetraisopropyl-1,3-disiloxane-1,3-diyl)- $\boldsymbol{\beta}$-D-glucopyranosyl]-(1 $\rightarrow 6$)-2,3,4-tri-O-benzoyl- $\boldsymbol{\beta}$-Dglucopyranoside (64). a) A suspension of $7^{10}(86.5 \mathrm{mg}, 0.13 \mathrm{mmol})$, methyl $2,3,4-$ tri- O-benzoyl- β-D-glucopyranoside $(70.9 \mathrm{mg}, \quad 0.14 \mathrm{mmol}$), methyl trifluoromethanesulfonate ($55 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$) and molecular sieves ($3 \AA, 0.1 \mathrm{~g}$) in dichloromethane (2 mL) was stirred at room temp. until TLC revealed complete consumption of the starting materials (4 h). The mixture was neutralized by addition of $\mathrm{Et}_{3} \mathrm{~N}(0.5 \mathrm{~mL})$, diluted with dichloromethane and washed with aqueous NaHCO_{3} solution. Concentration and chromatography of the residue gave 64 ($111.7 \mathrm{mg}, 77 \%$) as colorless crystals: $\mathrm{mp} 205^{\circ} \mathrm{C}$ (n-hexane); $[\alpha]_{\mathrm{D}}+3.9^{\circ}(c 0.5$, chloroform).

Anal. Calcd for $\mathrm{C}_{60} \mathrm{H}_{70} \mathrm{O}_{17} \mathrm{Si}_{2}$: $\mathrm{C}, 64.38 ; \mathrm{H}, 6.30$. Found: $\mathrm{C}, 64.32 ; \mathrm{H}, 6.33$.
b) $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(395 \mu \mathrm{~L}, 3.16 \mathrm{mmol})$ was added to a solution of $62(1.0 \mathrm{~g}, 1.58$ mmol), methyl 2,3,4-tri- O-benzoyl- β-D-glucopyranoside ($0.81 \mathrm{~g}, 1.6 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}$ ($224 \mu \mathrm{~L}, 1.6 \mathrm{mmol}$) in dichloromethane (10 mL) and the resulting yellow mixture was stirred at room temp. until TLC revealed complete consumption of the starting materials (20 min). The solution was washed with aqueous NaHCO_{3} solution and concentrated. Chromatography of the residue gave $64(1.49 \mathrm{~g}, 84 \%)$.
c) A solution of $63(97.0 \mathrm{mg}, 0.15 \mathrm{mmol})$ and methyl $2,3,4$-tri- O-benzoyl $-\beta$-Dglucopyranoside ($101.3 \mathrm{mg}, 0.2 \mathrm{mmol}$) in dichloromethane (5 mL) was added at room temp. to a suspension of silver trifluoromethanesulfonate ($128.5 \mathrm{mg}, 0.5 \mathrm{mmol}$) and molecular sieves ($3 \AA, 0.1 \mathrm{~g}$) in dichloromethane (5 mL), the mixture was stirred for 10 \min and filtered. The filtrate was washed with aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and NaHCO_{3} solution and concentrated. Chromatography of the residue gave $64(111.0 \mathrm{mg}, 66 \%)$.

Benzyl 2,3-Di-O-benzoyl-4-O-(1-fluoro-1,1,3,3-tetraisopropyl-1,3-disiloxane-3-yl)- α-D-mannopyranoside (65). Pyridine-polyhydrogen fluoride (100 $\mu \mathrm{L}, 3.5 \mathrm{mmol})$ was added to a solution of $24^{10}(360.5 \mathrm{mg}, 0.5 \mathrm{mmol})$ in dichloromethane (10 mL) and the mixture was stirred at room temp. until TLC revealed the complete conversion of the starting material into a single slower moving product (5 min). Workup as described for the preparation of compound 35 gave $65(359 \mathrm{mg}, 97 \%)$ as a colorless oil: $[\alpha]_{D}-26.6^{\circ}$ (c 0.5 , chloroform).

Anal. Calcd for $\mathrm{C}_{39} \mathrm{H}_{53} \mathrm{FO}_{9} \mathrm{Sin}_{2}$: C, $63.21 ; \mathrm{H}, 7.21$. Found: $\mathrm{C}, 63.07$; $\mathrm{H}, 7.20$.
2,3-Di-O-benzoyl-4,6-O-(1,1,3,3-tetraisopropyl-1,3-disiloxane-1,3-diyl)- α-D-mannopyranose (66). A suspension of $24^{10}(1.44 \mathrm{~g}, 2.0 \mathrm{mmol})$ and Pd
(10% on charcoal, 2 g) in ethyl acetate (20 mL) was treated with H_{2} at atmospheric pressure until TLC revealed complete conversion of the starting material into a single slower moving product (18 h). Filtration of the mixture, concentration of the filtrate and crystallization of the residue from n-hexane gave $66(1.2 \mathrm{~g}, 95 \%)$: $\mathrm{mp} 164^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}-97.9^{\circ}$ (c 0.2 , pyridine, after 1 h at room temp.).

Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{O}_{9} \mathrm{Si}_{2}$: C, 60.92; H, 7.35. Found: C, $60.68 ; \mathrm{H}, 7.30$.
2,3-Di-O-benzoyl-4,6-O-(1,1,3,3-tetraisopropyl-1,3-disiloxane-1,3-diyl)- α-D-mannopyranosyl Trichloroacetimidate (67). A suspension of 66 (0.69 $\mathrm{g}, 1.1 \mathrm{mmol}$), trichloroacetonitrile (2 mL) and $\mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{~g}, 14.5 \mathrm{mmol})$) in dichloromethane was stirred at room temp. until TLC revealed the complete conversion of the starting material into a single faster moving product (4 h). Filtration of the mixture, concentration of the filtrate and crystallization of the residue from n-hexane gave 67 (0.76 $\mathrm{g}, 89 \%)$: $\mathrm{mp} 147^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-59.6^{\circ}$ (c 0.6 , chloroform).

Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{Cl}_{3} \mathrm{NO}_{9} \mathrm{Si}_{2}: \mathrm{C}, 52.67 ; \mathrm{H}, 5.98 ; \mathrm{Cl}, 13.72 ; \mathrm{N}, 1.81$. Found: C, $52.56 ; \mathrm{H}, 5.98 ; \mathrm{Cl}, 13.83 ; \mathrm{N}, 1.73$.

Methyl
O-[2,3-Di-O-benzoyl-4,6-O-(1,1,3,3-tetraisopropyl-1,3-disiloxane-1,3-diyl)- α-D-mannopyranosyl]-(1 $\rightarrow 6$)-2,3,4-tri- O-benzoyl- β - D glucopyranoside (68). A solution of $67(310 \mathrm{mg}, 0.4 \mathrm{mmol})$ in dichloromethane (1 mL) was added at $-20^{\circ} \mathrm{C}$ to a solution of methyl $2,3,4$-tri- O-benzoyl- β-D-glucopyranoside ($253 \mathrm{mg}, 0.5 \mathrm{mmol}$) and trimethylsilyl trifluoromethanesulfonate ($6.6 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$) in dichloromethane (5 mL) and the mixture was stirred at $-20^{\circ} \mathrm{C}$ for 20 min . Workup as described for the preparation of compound 46 (b) gave 68 ($370 \mathrm{mg}, 83 \%$) as a colorless fcam: $[\alpha]_{\mathrm{D}}-28.4^{\circ}$ (c 1.5, chloroform).

Anal. Calcd for $\mathrm{C}_{60} \mathrm{H}_{70} \mathrm{O}_{17} \mathrm{Si}_{2}$: C, $64.38 ; \mathrm{H}, 6.30$. Found: C, $64.58 ; \mathrm{H}, 6.17$.
Methyl 2-O-Benzoyl-3-O-benzyl-4-O-(1-fluoro-1,1,3,3-tetraiso-propyl-1,3-disiloxane-3-yl)- β-D-galactopyranoside (70). Pyridine-polyhydrogen fluoride ($100 \mu \mathrm{~L}, 3.5 \mathrm{mmol}$) was added to a solution of $28(315.5 \mathrm{mg}, 0.5 \mathrm{mmol})$ in dichloromethane (10 mL) and the mixture was stirred at room temp. until TLC revealed the complete conversion of the starting material into a single slower moving product (5 min). Workup as described for the preparation of compound 35 gave 70 ($277.2 \mathrm{mg}, 85 \%$) as a colorless oil: $[\alpha]_{\mathrm{D}}+22.7^{\circ}$ (c 0.1, chloroform).

Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{51} \mathrm{FO}_{8} \mathrm{Si}_{2}$: C, $60.89 ; \mathrm{H}, 7.90$. Found: $\mathrm{C}, 60.89 ; \mathrm{H}, 7.80$.

ACKNOWLEDGMENTS

We thank Prof. Dr. Dr. h.c. F. Effenberger for helpful discussions and for providing the laboratory facilities. We also thank Dr. W. Rozdzinsky for performing the elemental analyses, Dr. P. Fischer and J. Rebell for recording the NMR spectra and
the Hoechst AG, Frankfurt for a gift of α-D-glucopyranosyl fluoride. This work was financially supported by the Deutsche Forschungsgemeinschaft.

REFERENCES

1. W. T. Markiewič, J. Chem. Res. (S), 24 (1979); J. Chem. Res. (M), 181 (1979).
2. W. T. Markiewicz, Tetrahedron Lett., 21, 4523 (1980).
3. W. T. Markiewicz and M. Wiewiórowski, Nucleic Acids Res., 4, s185 (1978).
4. M. J. Robins, J. S. Wilson and F. Hansske, J. Am. Chem. Soc., 105, 4059 (1983).
5. C. H. M. Verdegaal, P. L. Jansse, J. F. M. de Rooij and J. H. van Boom, Tetrahedron Lett., 21, 1571 (1980).
6. C. A. A. van Boeckel and J. H. van Boom, Tetrahedron Lett., 21, 3705 (1980).
7. J. J. Oltvoort, M. Klosterman and J. H. van Boom, Recl. Trav. Chim. Pays-Bas, 102, 501 (1983).
8. J. Thiem, V. Duckstein, A. Prahst and M. Matzke, Liebigs Ann. Chem., 289 (1987).
9. M. Yokoyama, K. Sujino, M. Irie, N. Yamazaki, T. Hiyama, N. Yamada and H. Togo, J, Chem. Soc. Perkin Trans. I, 2801 (1991).
10. T. Ziegler, E. Eckhardt, K. Neumann and V. Birault, Synthesis, 1013 (1992).
11. T. Ziegler, K. Neumann, E. Eckhardt, G. Herold and G. Pantkowski, Synlett, 699 (1991).
12. T. Ziegler and E. Eckhardt, Tetrahedron Lett., 33, 6615 (1992).
13. K. C. Nicolaou, A. Chucholowski, R. E. Dolle and J. L. Randall, J. Chem. Soc., Chem. Commun., 1155 (1984).
14. H. Kunz and W. Sager, Helv. Chim. Acta, 68, 283 (1985).
15. B. Ernst and B. Wagner, Helv. Chim. Acta, 72, 165 (1989).
16. M. Kreuzer and J. Thiem, Carbohydr. Res., 149, 347 (1986).
17. S. Hashimoto, M. Hayashi and R. Noyori, Tetrahedron Lett., 25, 1379 (1984).
18. H. P. Wessel, Tetrahedron Lett., 31, 6863 (1990).
19. H. X. Zhang, F. Guibé and G. Balavoine, Synth. Commun., 17, 1299 (1987).
20. T. Ziegler and U. Seidl, J. Carbohydr. Chem., 10, 813 (1991).
21. P. Kovác, C. P. J. Glaudemans and R. B. Taylor, Carbohydr. Res., 142, 158 (1985).
22. T. Murase, H. Ishida, M. Kiso and A. Hasegawa, Carbohydr. Res., 184, C1 (1988).
23. T. Ziegler, P. Kovác and C. P. J. Glaudemans, Carbohydr. Res., 194, 185 (1989).
24. Y. Tsuda, M. E. Haque and K. Yoshimoto, Chem. Pharm. Bull., 31, 1612 (1983).
25. C. A. A. van Boeckel and J. H. van Boom, Chem. Lett., 581 (1981).
26. C. A. A. van Boeckel, P. Westerduin and J. H. van Boom, Tetrahedron Lett., 22, 2819 (1981).
27. H. Gross, I. Farkas and R. Bognar, Z. Chem., 18, 201 (1978).
28. T. Ziegler, P. Kovác and C. P. J. Glaudemans, Liebigs Ann. Chem., 613 (1990).
29. T. Mukaiyama, Y. Murai and S-i. Shoda, Chem. Lett., 431 (1981).
30. R. L. Nath and H. N. Rydon, Biochem. J., 57, 1 (1954).
31. H. Wetter and K. Oertle, Tetrahedron Lett., 26, 5515 (1985).
32. P. A. Finan and C. D. Warren, J. Chem. Soc., 3089 (1962).
33. A. Stoffyn and P. Stoffyn, J. Org. Chem., 32, 4001-4006 (1967).
34. R. J. Ferrier and R. H. Furneaux, Meth. Carbohydr. Chem., 8, 251 (1980).
35. R. U. Lemieux, Can. J. Chem., 29, 1079 (1951).
36. R. R. Schmidt and J. Michel, Angew. Chem., 92, 763 (1980).

[^0]: $4.34 \mathrm{bs}, \mathrm{SiOH} . \mathrm{g} . \mathrm{CH}_{2} \mathrm{Ph}(J=-12.9 \mathrm{~Hz}) ; 4.29 \mathrm{bs}, \mathrm{SiOH}$. h, i. Attributions may be inverted. j. $J_{\mathrm{HF}}=53.8 \mathrm{~Hz}, J_{\mathrm{C}} \mathrm{F}=224.0 \mathrm{~Hz} . \mathrm{k} . J_{\mathrm{H}}=25.1 \mathrm{~Hz}, J_{\mathrm{CF}}=25.5 \mathrm{~Hz} .1 . J_{\mathrm{C}} \mathrm{F}=$ $2.9 \mathrm{~Hz} . \mathrm{m} . J_{\mathrm{H}, \mathrm{F}}=53.7 \mathrm{~Hz}, J_{\mathrm{C}, \mathrm{F}}=228.0 \mathrm{~Hz}$. n. $J_{\mathrm{H}, \mathrm{F}}=24.2 \mathrm{~Hz}, J_{\mathrm{C}, \mathrm{F}}=26.3 \mathrm{~Hz}$. o. $J_{\mathrm{C}, \mathrm{F}}=5.9 \mathrm{~Hz}$. p. $\mathrm{CH}_{2} \mathrm{Ph}(J=-11.8 \mathrm{~Hz})$. q. $\mathrm{CH} \mathrm{H}_{2} \mathrm{Ph}(J=-11.8 \mathrm{~Hz})$.

